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Abstract—With the integration of 6G networks and Internet of
Vehicles (IoV), constructing reliable Transmission Control Proto-
col (TCP) throughput maps is crucial for intelligent transporta-
tion systems. These maps provide critical insights into network
performance, enabling efficient data transmission planning and
informed decision-making. However, the dynamic nature of IoV
systems, along with resource constraints poses challenges for
map construction. To address these challenges, we develop a
novel framework for constructing TCP throughput maps. The
framework uses base station sensing to collect vehicle positions
and communication resources to gather TCP throughput data.
A Digital Twin integrates those data over the map in real-time
and predicts TCP throughput at every location with prediction
uncertainty. A key aspect of this framework is the selection
of vehicles to measure TCP throughput, minimizing prediction
uncertainty and measurement overhead. We present a method
that models the TCP throughput map using Gaussian Process
Regression, which accounts for uncertainty. And to take into
account the dynamic nature of IoV environments, we also propose
the Fixed-Observation Rolling Optimization Algorithm (FOROA)
to dynamically select vehicles that measure communication per-
formance. Simulation experiments show that the FOROA reduces
map uncertainty 41% faster than the previous method when
reducing map uncertainty by 40%.

Index Terms—6G, Digital Twin, IoV, TCP Throughput.

I. INTRODUCTION

As 6G networks and Internet of Vehicles (IoV) technology
continue to evolve, constructing a reliable Transmission Con-
trol Protocol (TCP) throughput maps has become fundamental
for enabling intelligent transportation systems. These maps
serve as essential tools for evaluating network performance,
managing traffic, and supporting real-time decision-making.
In dynamic IoV networks, where communication conditions
frequently fluctuate, a TCP throughput map provides valuable
guidance for optimizing data routing strategies and enhancing
overall system efficiency.

Constructing a TCP throughput map requires two key
components: real-time data collection and accurate model-
ing techniques. Data collection involves acquiring network
performance metrics, while modeling integrates this data to
represent network conditions coherently and reliably. However,
IoV scenarios face challenges such as limited communication
resources, high data collection costs, and rapidly changing
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environments, which complicate both data acquisition and the
development of accurate mapping techniques.

To address these challenges, we develop a novel framework
for TCP throughput map construction, which dynamically col-
lects TCP throughput data based on vehicle mobility. The key
aspect of the framework is the intelligent selection of vehicles
for measurement, which plays a critical role in minimizing
map uncertainty and optimizing resource utilization.

This framework is based on two kinds of digital twins
(DTs), the digital twin of vehicles (DT-V), and the digital
twin of communication performance (DT-C). The DT-V serves
as a digital representation of vehicle mobility, continuously
updated through the collection of vehicle location data from
GPS, the analysis of reflective signals from sensing wave-
forms, as known as Integrated Sensing and Communication
(ISAC), and other relevant sources. Leveraging the DT-V,
future vehicle locations can be accurately predicted. The DT-
C represents a TCP throughput map that incorporates the
predicted TCP throughput at each location. It collects TCP
throughput data from selected vehicles, using the data to
estimate the continuous spatio-temporal TCP throughput map.
However, the greater the distance between the observation and
estimation points and the longer the time between the obser-
vation and estimation times, the less accurate the estimated
TCP throughput value will be. Therefore, as proposed in [1],
DT-C represents the TCP throughput as a probability map with
uncertainty. To capture the spatial and temporal correlations in
TCP throughut, we use Gaussian Process Regression (GPR)
with a spatio-temporal kernel [2] in DT-C. By using GPR with
a spatio-temporal kernel, we can predict the average value of
the TCP throught and its uncertainty at each time and location.

We propose a method for selecting vehicles to measure
TCP throughput, leveraging the strengths of DT-V and DT-
C. This method selects vehicles based on their ability to
reduce the uncertainty of the DT-C model, using predicted
vehicle locations from DT-V. Traditional optimization and
machine learning approaches face significant challenges in
IoV networks due to dynamic conditions, high computational
demands, and the need for real-time adaptability.

To overcome these limitations, we introduce the Fixed-
Observation Rolling Optimization Algorithm (FOROA),
tailored for the dynamic nature of IoV environments. FOROA
utilizes a fixed observation window to efficiently analyze
vehicle trajectories and network conditions, enabling it to



adapt to rapid changes in mobility and connectivity. By focus-
ing on a limited yet relevant data horizon, FOROA reduces
computational overhead while ensuring timely and accurate
vehicle selection. This innovation facilitates the construction
of precise TCP throughput maps, even under resource and time
constraints, making it an ideal solution for IoV applications.

The contributions of this work are summarized as follows:
• Spatio-Temporal Kernel for TCP Throughput Mod-

eling: We develop a spatio-temporal kernel function
to capture spatial and temporal correlations in TCP
throughput data. Integrated within a GPR framework, this
kernel enables precise map construction and uncertainty
quantification, addressing scenarios with significant spa-
tiotemporal dependencies.

• Innovative Vehicle Selection with FOROA: We in-
troduce FOROA, which adapts rolling optimization for
IoV scenarios. It efficiently selects vehicles by leveraging
observed trajectories and throughput uncertainty, ensuring
accurate map construction despite resource constraints.

II. RELATED WORK

The existing research can primarily be classified into two
parts: Integration of ISAC with DT technology and Spatio-
Temporal-based TCP throughput uncertainty model.

In the development of 6G networks, the integration of ISAC
with DT technology is considered a key direction. Recently,
several studies have applied DT technology to ISAC systems.
In [3], Zhang et al. applied DT technology for sensing channel
estimation in cell-free ISAC MIMO systems. In [4], Hu et al.
leveraged DT technology in an ISAC system to optimize data
processing and reduce long-term computation costs. In the IoV
scenario, Ding et al. [5] proposed a DT-based ISAC framework
for vehicular networks, employing predictive vehicle tracking
and optimized beamforming to enhance transmission rates and
sensing accuracy. Gong et al. [6] applied DT technology to an
ISAC system within a vehicle edge computing environment,
enabling optimized task scheduling and resource allocation
by dynamically modeling network conditions and vehicle
mobility to reduce response times.

These studies focus on traditional ISAC whose sensing
target is real-world objects. On the other hand, our sensing
target in this paper is TCP throughput but TCP throughput
measurement also consumes radio resources similar to the
sensing objects in ISAC. That is, this paper extends the concept
of ISAC to include the radio and network environments as the
sensing target.

Affected by various factors such as network topology
and bandwidth, TCP throughput uncertainty exhibits complex
spatio-temporal dependencies. Hoang et al. investigated the
spatial correlation of TCP throughput by analyzing the joint
impact of transmission errors in satellite-to-vehicle last-mile
channels and congestion losses on the Internet [7]. Bommisetty
et al. analyzed the temporal correlation of TCP throughput by
studying how Round-Trip Time and buffer size affect queue
metrics, revealing the dependency of throughput stability on
varying network conditions [8].

While these studies provide valuable insights into the spa-
tial and temporal correlation of TCP throughput, they often

lack a unified approach to model the joint spatio-temporal
dependencies of TCP throughput uncertainty, especially in
dynamic and complex IoV scenarios. To address this gap, our
work introduces a spatio-temporal approach to model TCP
throughput uncertainty, effectively capturing its variations for
dynamic tracking and prediction in IoV scenarios.

III. SYSTEM MODEL

A. The Introduction of our System

As shown in Figure 1, We consider a DT-Enhanced ve-
hicle selection Framework comprising a physical environ-
ment and a DT environment. The physical environment in-
cludes several uniformly distributed observation points G =
{g1, . . . , gn, . . . , gN} and several vehicles participating in the
collection of TCP throughput data V = {v1, . . . , vm, . . . , vM}.
The DT environment is maintained by a base station and
consists of two components: DT-V and DT-C. The base
station provides the DT environment with vehicle location
data and TCP throughput data collected by vehicles. The DT-
V processes vehicle location data to predict future vehicle
trajectories, while the DT-C integrates throughput data to
update the TCP throughput map and compute uncertainty
values. In return, the DT-V provides vehicles with predicted
trajectory data, and the DT-C provides throughput uncertainty
values, assisting the base station in selecting vehicles for data
collection. The process for updating DT-V and DT-C is shown
as follows:

Initially, the base station collects real-time vehicle position
data via GPS and other onboard sensors. This data is used to
update the DT-V, which then predicts future vehicle locations.
Simultaneously, the DT-C provides the base station with the
uncertainty of TCP throughput from the previous time step.
Combining the predicted vehicle locations from DT-V and the
TCP throughput uncertainty of the previous time step from
DT-C, the base station selects specific vehicles to monitor TCP
throughput. The selected vehicles measure throughput data and
transmit it back to the base station. This data is integrated into
the DT-C to update the TCP throughput map and compute its
associated uncertainty, further improving the model’s accuracy.

In the rest of this paper, we focus on the DT-C; we introduce
the spatio-temporal model used in the DT-C and the method
to select vehicles for TCP throughput measurement, assuming
that the DT-V can predict the future locations of vehicles
accurately.

B. Spatio-Temporal Correlation Model

The construction of a TCP throughput map in this frame-
work involves two essential components: (1) predicting mean
throughput values for observation points and (2) quantifying
and updating the uncertainty associated with these predictions.
To achieve this, we employ GPR with a custom-designed
spatio-temporal kernel function, which captures the dependen-
cies in TCP throughput data and enables precise prediction and
uncertainty modeling.

The spatio-temporal kernel function serves as the backbone
of the GPR framework, modeling the relationships between
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Fig. 1. Digital Twin-Enhanced vehicle selection Framework

vehicles and observation points by capturing both spatial and
temporal correlations. This kernel function is defined as:

kST (vm, gn) = β2·exp
(
−∥zm − zn∥2
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)
·exp
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2lt

)
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where β2 is the process variance parameter, representing the
variability of the throughput data. exp

(
−∥zm−zn∥2

2l2s

)
captures

spatial correlations, with ls being the spatial length scale and
zm, zn denoting the positions of vm and gn, respectively.
exp

(
− |tm−tn|

2lt

)
captures temporal correlations, where tm is

the time step of vm, and tn is the time step of gn. This
kernel function enables the GPR model to account for dynamic
spatio-temporal dependencies, providing a robust framework
for constructing the TCP throughput map.

Using the spatio-temporal kernel function, GPR predicts the
mean TCP throughput value µ(gtn) for each observation point
gn at time step t as follows:

µ(gtn) =
∑

vm∈St

w(vm, gn) · T (vm) (2)

where T (vm) represents the observed throughput data col-
lected from vehicle vm; w(vm, gn) = kST (vm,gn)∑

v′
m∈St kST (v′

m,gn)
is

the normalized weight derived from the spatio-temporal kernel,
indicating the influence of vm on gn; St ⊆ Vt is the subset
of selected vehicles at time step t. This prediction forms the
foundation of the TCP throughput map, representing mean
throughput values across the road network.

In addition to predicting the mean values, GPR quantifies
the uncertainty σ(gtn) associated with each observation point
gn. The uncertainty is iteratively updated at every time step t
using the following rule:

σ(gtn) = max
(
0, σ(gt−1

n )− kST (g
t
n,St)

)
(3)

where σ(gt−1
n ) is the uncertainty from the previous time step;

kST (g
t
n,St) is the aggregated spatio-temporal kernel value

between gn and the selected vehicle set St; max(0, ·) ensures
non-negative uncertainty values.

By iteratively refining the uncertainty values, the framework
achieves a more precise representation of the confidence levels
associated with each throughput prediction.

The total uncertainty across the road network at time step
t is computed as:

U(t) =
∑
gn∈G

σ(gtn) (4)

The accumulated uncertainty over [t, t′] is defined as:

U =

∫ t′

t

U(t) dt =

∫ t′

t

∑
gn∈G

σ(gtn) dt (5)

By leveraging the spatio-temporal kernel function and the
GPR, our framework constructs a TCP throughput map that
integrates predicted throughput values with associated uncer-
tainties. This enables precise modeling and supports decision-
making in dynamic IoV environments.

IV. OPTIMIZING THE UNCERTAINTY OF TCP
THROUGHPUT MAP WITH FOROA

In this section, we present the methodology for minimizing
the uncertainty of the TCP throughput map using the FOROA.
The mathematical formulation and integration of the core
elements—state, action, and reward—are detailed below.

A. Problem Formulation

To explore the best vehicle selection strategy and collect
TCP throughput data, the optimization problem is defined as:

min
St

∫ t′

t

∑
gn∈G

σ(gtn) dt

s.t.
∑

vt
m∈St

1(vtm) ≤ Kt, ∀t,

St ⊆ Vt, gn ∈ G

(6)



where 1(vtm) is an indicator function returning 1 if vehicle
vm is selected, and 0 otherwise; Kt is the maximum number
of vehicles that can be selected at time t; G represents the set
of all observation points in the road map; and σ(gtn) is the
uncertainty at observation point gn at time t.

This problem seeks to minimize the total accumulated
uncertainty over the observation horizon by optimally selecting
vehicles. However, due to the non-linear dependencies intro-
duced by the spatio-temporal kernel kST (g

t
n,St), the opti-

mization problem is non-convex, posing significant challenges
for traditional optimization techniques.

B. Dynamic Vehicle Selection Using FOROA

To tackle the challenge of dynamic vehicle selection in IoV
environments, we propose FOROA, an algorithm designed
to minimize the uncertainty of the TCP throughput map
while effectively operating within limited resources. FOROA
operates as a feedback loop and progresses through three
stages: (1) Observation and Assessment: During this phase,
the algorithm uses the state st to observe vehicle movements
over a fixed observation window c and assess the current
uncertainty levels in the TCP throughput map. (2) Evalua-
tion: In this stage, the algorithm calculates the reward rt,
which quantifies the reduction in uncertainty achieved by each
vehicle’s data contribution. This reward is used to evaluate
each vehicle’s potential to improve the TCP throughput map.
(3) Selection: Finally, the algorithm determines the action at,
which corresponds to selecting an optimal subset of vehicles.
This subset is chosen to maximize the reduction in uncertainty
across the TCP throughput map while adhering to resource
constraints. These stages are supported by the definitions of
state, action, and reward, as detailed below.

1) State: The state st captures all relevant information
available to the base station at time t, enabling the algorithm
to make informed decisions. The state includes the predicted
future positions of vehicles, the current observation point, and
the uncertainty levels from the previous time step:

st =
(
{zt+1,...,t+c

m }, ztn, {σ(gt−1
i ) | i = 1, . . . , N},Vt

)
(7)

2) Action: The action at corresponds to selecting a subset
of vehicles St ⊆ Vt for data collection at time t. The
algorithm evaluates the contribution of each vehicle within
the observation window and selects vehicles expected to most
effectively reduce the uncertainty of the TCP throughput map.
Formally, the action is defined as:

at = St (8)

3) Reward: The reward rt quantifies the effectiveness of
the selected vehicles in improving the TCP throughput map.
It is calculated as the total reduction in uncertainty across all
observation points:

rt =
∑
gn∈G

(
σ(gt−1

n )− σ(gtn)
)

(9)

By integrating state, action, and reward, FOROA ensures
robust and adaptive vehicle selection, enabling efficient and
accurate updates to the TCP throughput map in dynamic IoV
environments.

V. SIMULATION EVALUATION

A. Simulation Settings

The experiment is conducted using OMNeT++, SUMO,
and Veins to simulate vehicle mobility and data collection in
a complex IoV scenario. First, SUMO is used to construct the
road model, followed by OMNeT++ and Veins for building
the vehicle mobility model and the road TCP throughput dis-
tribution model. The objective is to select vehicles in real time
to collect TCP throughput data and minimize the uncertainty
σ(gtn) of the TCP throughput map. Table I summarizes the
simulation settings used in the experiment.

TABLE I
SIMULATION SETTINGS

Parameters Values
The number of observation points N 304
Uncertainty of observation point σ(gtn) 0-1
Maximum Number of Vehicles M 20.0
Time Steps T 0-99
Length Scale (Space) ls 60.0
Length Scale (Time) lt 5.0
Maximum Vehicles to Select (per step) Kt 1-5
Process Variance β2 1.0
Window Size c 0-5

B. Convergence Analysis of FOROA algorithm

We investigate the impact of window size and the number of
vehicles selected on the convergence of the FOROA algorithm.
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Fig. 2. Window Size Impact on the Uncertainty

Figure 2 illustrates the impact of varying the window size
parameter, which predicts future vehicle positions, on the
uncertainty of the TCP throughput map. Experimental results
indicate that increasing the window size beyond 2 does not
significantly reduce uncertainty. This suggests diminishing
returns in uncertainty reduction with larger window sizes,
likely due to the reduced relevance of distant future predictions
to current decisions. Consequently, we fix the window size at
2 in our algorithm, balancing computational efficiency with
minimizing parameter size to ensure optimal performance
without unnecessary computational overhead.

Figure 3 illustrates how the number of vehicles selected
per time step affects the reduction of uncertainty in the TCP
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throughput map, with the window size fixed at 2. The exper-
imental results show that uncertainty decreases significantly
as the number of selected vehicles increases from 1 to 3.
However, beyond 3 vehicles, additional selections provide di-
minishing returns in uncertainty reduction. This trend indicates
that selecting more than 3 vehicles does not substantially
enhance the reduction of uncertainty in the TCP throughput
map. Therefore, setting the maximum number of vehicles
selectable per second to 3 strikes an efficient balance between
cost and performance, enabling effective and economical road
TCP throughput data collection.

C. Comparison with other algorithms

In this section, we fix the window size to 2 and limit the
maximum number of selected vehicles to 3 per time step.
The performance of FOROA is compared with three methods:
Select All Vehicles (SAV), which selects all available vehicles
at each time step to achieve the fastest uncertainty reduction;
Greedy Selection Algorithm (GSA), which sequentially se-
lects three vehicles by prioritizing the immediate reduction
of TCP throughput uncertainty at each time step, without
considering the overall global optimization, aims to minimize
uncertainty; and Random Selection Algorithm (RSA), which
randomly selects up to three vehicles per time step.
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Fig. 4. Comparison of FOROA with Three Other Algorithms

As illustrated in Fig. 4, the FOROA algorithm demonstrates
superior performance compared to RSA by effectively utilizing
resources, significantly reducing uncertainty, and adapting to
dynamic IoV environments. Specifically, when reducing map
uncertainty by 40%, FOROA achieves this 41% faster than
GSA, leveraging its predictive capabilities to optimize re-
source allocation more effectively under limited resources for
TCP throughput measurement. In addition, compared to SAV,
FOROA achieves near-optimal performance despite constraints
on the number of selected vehicles and limited observation
of vehicle trajectory time steps. These results underscore
the algorithm’s efficiency in resource utilization, robustness
against temporal constraints, and its ability to maintain low
uncertainty in the TCP throughput map.

VI. CONCLUSION

In this work, we develop a novel framework for reducing
uncertainty in the TCP throughput map within dynamic IoV
networks, leveraging DT technologies. To address resource
constraints and dynamic environmental challenges, we propose
the FOROA, a heuristic approach that optimizes vehicle se-
lection within a fixed observation window size. By integrating
spatio-temporal kernel functions with a rolling optimization
strategy, FOROA achieves efficient and cost-effective solutions
for real-time TCP throughput data collection and uncertainty
reduction. This framework lays a solid foundation for con-
structing scalable TCP throughput maps in dynamic IoV
scenarios.

Future research will focus on visualizing the TCP through-
put map to provide intuitive insights and exploring more ad-
vanced predictive models to further enhance the framework’s
accuracy and applicability.
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