Robot Path Planning

for Monitoring Dynamic Environment

by Predictive Uncertainty Minimization

Using Gaussian Process Regression

Tian Gao (Sola) Nattaon Techasarntikul, Yuichi Ohsita, Hideyuki Shimonishi The 43rd International Conference on Consumer Electronics 2025.1.12

1, Introduction - Background

- Environmental Monitoring for Achieving Digital Twin
 - disaster response, smart building management, precision agriculture
- Challenges:
 - require continuous and accurate data collection in wide areas to make informed decisions
 - fixed sensors (limitation)
 - time-consuming, resource-intensive, impractical for certain environments
- Mobile robot
 - flexible and efficient: move along a route given by path planning strategy to collect data in real-time

1, Introduction - Traditional Path Planning

- Focused on collecting information
- Maximize information gain within limited resources
 - time, path length, or energy
- Not consider the dynamic environment
 - the environmental features may change during the robot's movement
 - the past observations may be no longer useful, and new observations may be required to follow the real-time changes

Uncertainty

old observations are still close to the current actual value over time?

1, Introduction - Objective

Continuous Enviromental Monitoring

• Minimize Uncertainty Levels

Ensure that the uncertainty of environmental predictions remains consistently low during the robot's movement

Accurate Predictions

Maintain the prediction error within an acceptable range compared to actual environmental values

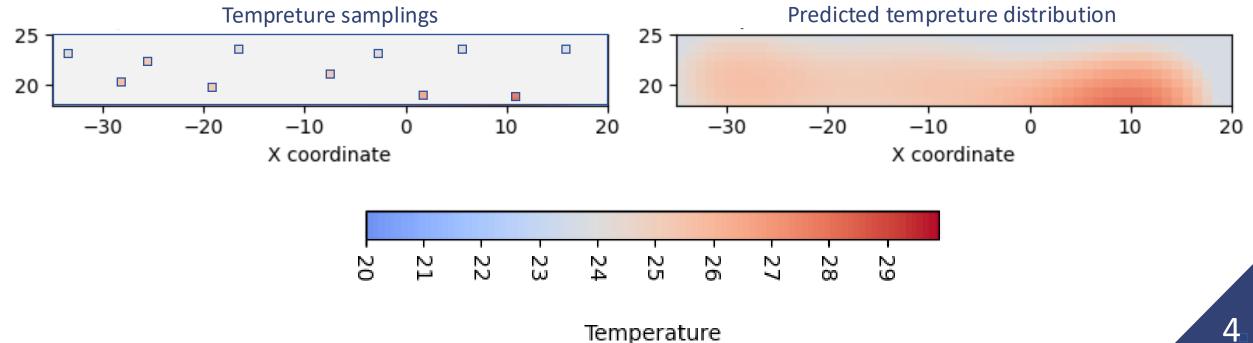
Sustainable Monitoring

Enable continuous monitoring, allowing the system to start and stop at any location and time as needed

Key Concepts - Gaussian Process Regression

Gaussian Process Regression (GPR) lacksquare

models environmental features and provides probabilistic predictions along ulletwith uncertainties



3, Proposed Method - Spatio-Temporal GPR

- Spatio-Temporal GPR(ST-GPR) Model
 - Spatio-Temporal Kernel Function

$$k_{ST} \left(\mathbf{x}_i, \mathbf{x}_j \right) = \sigma_0^2 \cdot \exp\left(-\frac{\|\mathbf{z}_i - \mathbf{z}_j\|^2}{2 \cdot l_{\text{space}}^2} \right) \cdot \exp\left(-\frac{|t_i - t_j|}{l_{\text{time}}} \right)$$
space decay rate

• Mean value and uncertainty

$$\mu(\mathbf{x}^*) = k_{ST}(\mathbf{x}^*, \mathbf{X}) K^{-1} \Delta y(\mathbf{Z}, T)$$

$$\sigma^2(\mathbf{x}^*) = k_{ST}(\mathbf{x}^*, \mathbf{x}^*) - k_{ST}(\mathbf{x}^*, \mathbf{X})K^{-1}k_{ST}(\mathbf{X}, \mathbf{x}^*)$$

Global uncertainty

$$\sum_{\mathbf{z}\in\mathbf{Z}}\sigma\left(\{\mathbf{z},t\}\right.$$

3, Proposed Method - Predictive Uncertainty Minimization

Predictive Uncertainty Minimization(PUM)

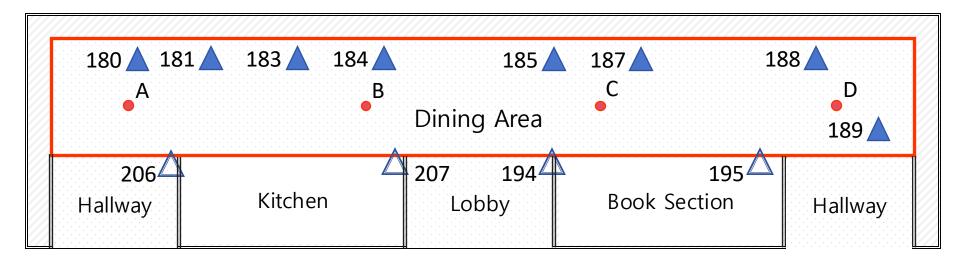
$$U(\mathbf{X}, \mathcal{C}) = \int_{t}^{t+H} \sum_{\mathbf{z} \in \mathbf{Z}} \sigma\left(\{\mathbf{z}, t\} | \mathbf{X}, \hat{\mathbf{X}}_{\mathcal{C}}\right) dt$$

$$\mathcal{C}^* = \underset{\mathcal{C} \in \{c^N\}}{\operatorname{arg\,min}} U(\mathbf{X}, \mathcal{C}) \qquad \text{Where N x } \triangle \mathsf{T} = \mathsf{H}$$

- Solve the optimization problem over a time horizon
- Adaptive control based on predicted future states (only the first step of the solution is implemented)

4, Experimental Setup - Dataset

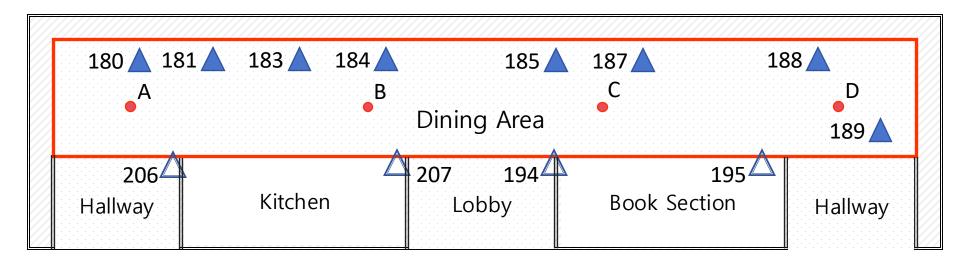
Real-world temperature data

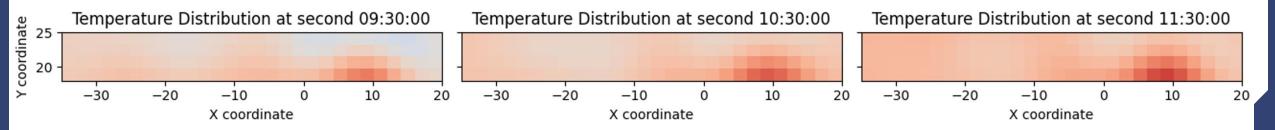


- a dining space of 56 meters by 8 meters
- 8 fixed temperature sensors placed at a height of 2.2 meters
- 4 more sensors in open areas outside the dining area

4, Experimental Setup - Dataset

Real-world temperature data

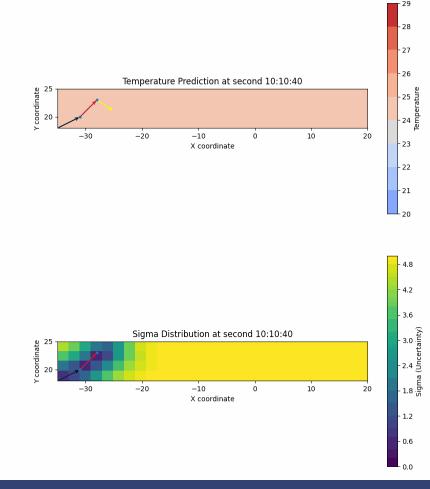




dataset collected at the Minoh Campus of Osaka University by Osaka University and Daikin Industries, Ltd on June 12th, 2024

5, Experimental Result - Monitoring Path

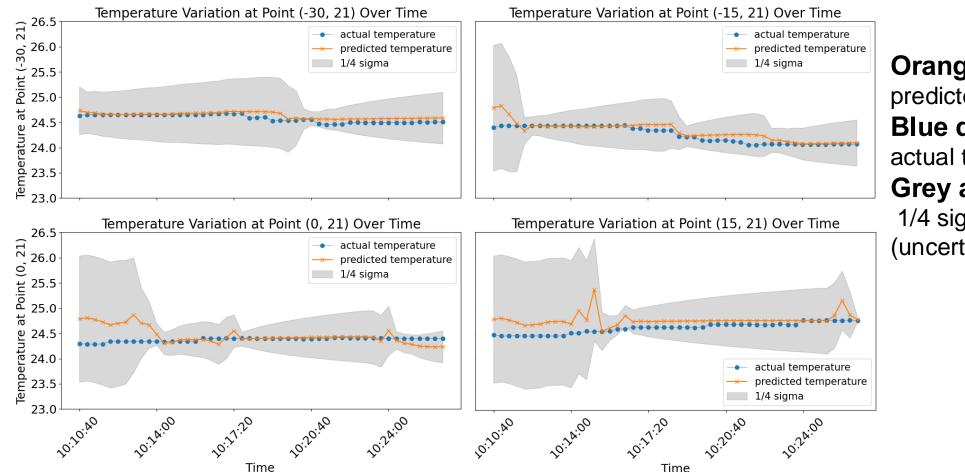
estimated temperature distribution and uncertainty



- Monitoring Time: 10:10am~10:40am
- Black: most recent 20 movements
- Light-colored: predicted optimal path in next 40s
 - Red: current movement
 - Yellow: next movement

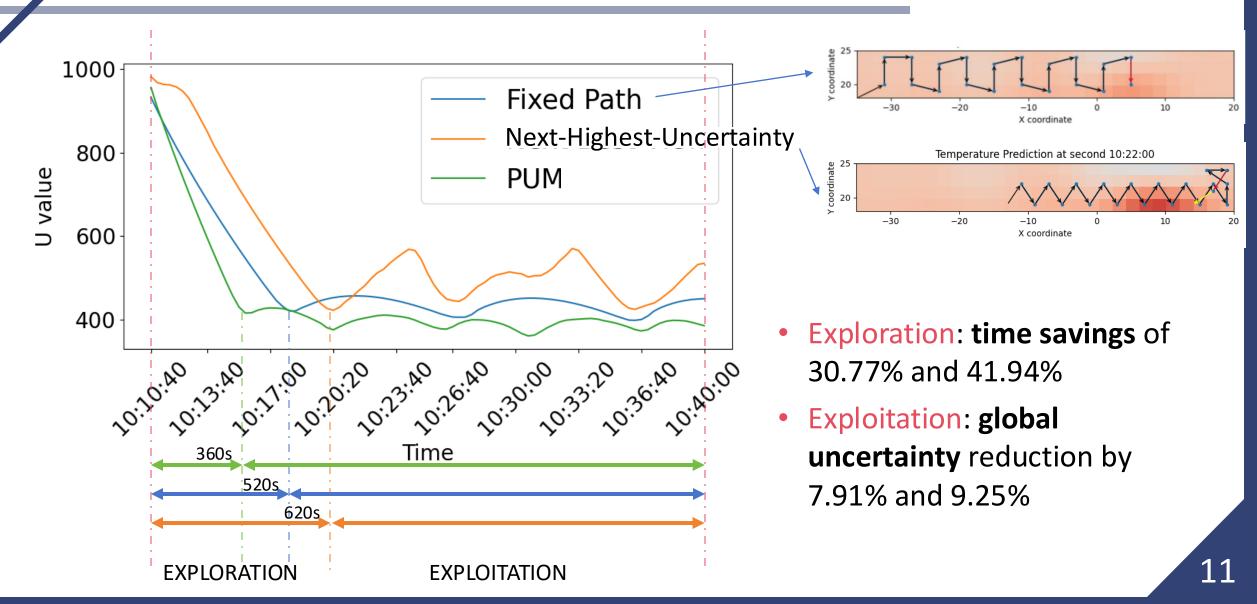
5, Experimental Result - Accuracy

• Temperature at 4 points



Orange line: predicted temperature Blue dotted line: actual temperature Grey area: 1/4 sigma (uncertainty range)

5, Experimental Result - Efficiency



6, Conclusion

- Predictive Uncertainty Minimization
 - accuracy and efficiency
 - uncertainty-driven path planning
 - ✓ focuses only on predicting future model uncertainty
 - ✓ independent of the values of the environmental factors
 - ✓ suitable for monitoring any environmental data
 - Wi-Fi signal strength, gas concentrations, marine pollution, traffic flow .etc

Appendix – Spatio-Temporal GPR

- Spatio-Temporal GPR(ST-GPR) Model
 - Accounts for spatial and temporal correlations

$$\mathbf{x}^* = (\mathbf{z}^*, t^*)$$

$$y(\mathbf{z}^*, t^*) = \bar{\mathbf{y}} + \Delta y(\mathbf{z}^*, t^*) \quad where \ \bar{\mathbf{y}} = \frac{\sum_{\mathbf{z} \in Z, t \in T} y(\mathbf{z}, t)}{|Z| \times |T|}$$

• Spatio-Temporal Kernel Function

$$k_{ST} \left(\mathbf{x}_i, \mathbf{x}_j \right) = \sigma_0^2 \cdot \exp\left(-\frac{\|\mathbf{z}_i - \mathbf{z}_j\|^2}{2 \cdot l_{\text{space}}^2} \right) \cdot \exp\left(-\frac{|t_i - t_j|}{l_{\text{time}}} \right)$$

$$space \, \text{decay rate} \quad \text{time decay rate}$$

Appendix – Parameter Settings

- Motion Parameter
 - speed: 0.2~0.4 m/s
 - scanning interval: 20s
 - time scape (H): 40s $U(\mathbf{X}, \mathcal{C})$ =

$$= \int_{t}^{t+H} \sum_{\mathbf{z}\in\mathbf{Z}} \sigma\left(\{\mathbf{z},t\}|\mathbf{X},\hat{\mathbf{X}}_{\mathcal{C}}\right) dt$$

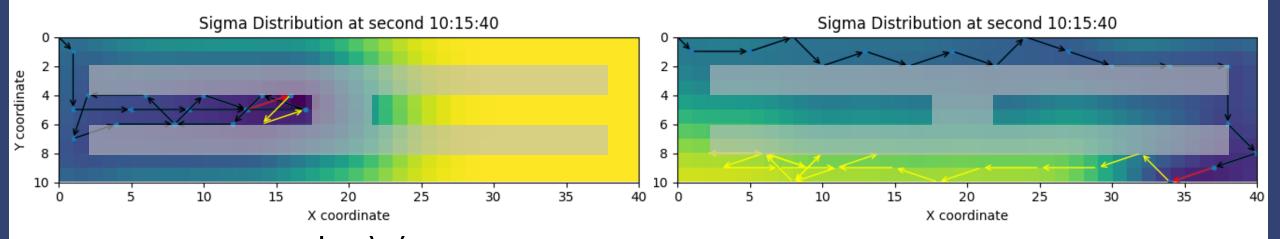
• Spatio-Temporal Kernel Function

$$k_{ST} \left(\mathbf{x}_i, \mathbf{x}_j \right) = \sigma_0^2 \cdot \exp\left(-\frac{\|\mathbf{z}_i - \mathbf{z}_j\|^2}{2 \cdot l_{\text{space}}^2} \right) \cdot \exp\left(-\frac{|t_i - t_j|}{l_{\text{time}}} \right)$$

 $\{l_{space}, l_{time}, \sigma_0\} = \{5, 3600, 5\}$

Appendix – Environments with Obstacles

Applicability in Environments with Obstacles



Extend the prediction horizon from 60 seconds to 400 seconds

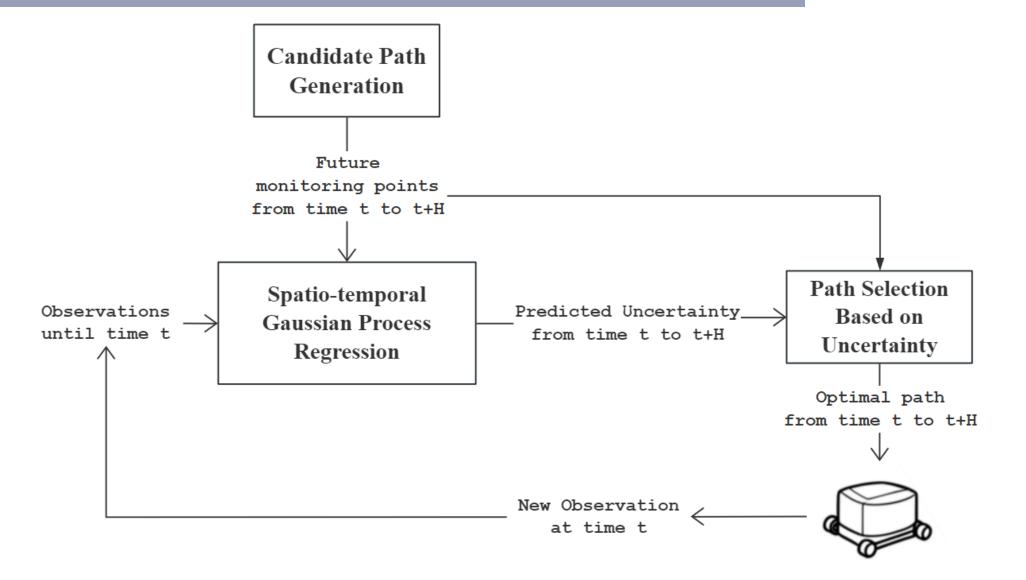
- avoid falling into local optima
- a more comprehensive analysis

Appendix – Future Work

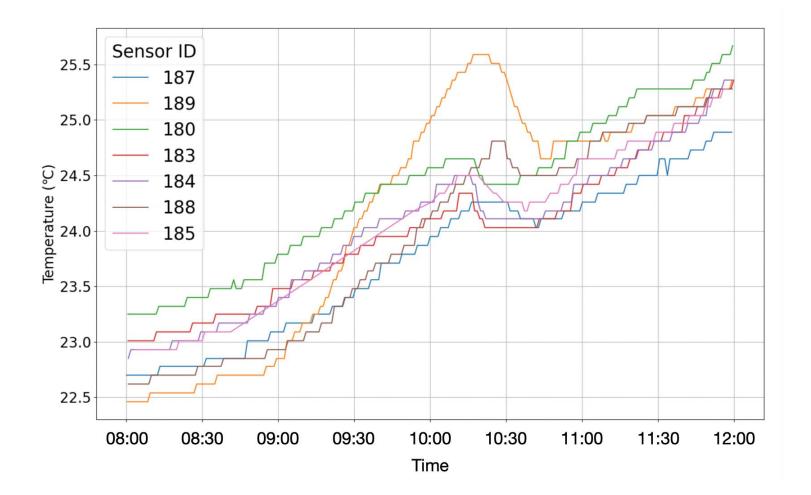
Optimization of parameter values

- local factors such as windows and air conditioning units can lead to asynchronous temperature changes across different regions
- those areas that are more susceptible to temperature changes need to be observed more frequently than other areas
- Automatic adjustment
 - analyze previous predictions and observations
 - dynamically adjust the parameters for the spatial and temporal coordinates of each point

Appendix – System Overview



Appendix – Ground Truth



6