Detecting Falls and Slips in Wheelchair Users Using Low-Resolution Thermal Imaging

ICCE Consumer Systems for Healthcare and Wellbeing (CSH) 12/1/2025

Shisei Nakamura ^{†1}, Masaaki Yamauchi ^{†1}, Miwa Sugita ^{†2†3}, Yoshihiro Aso ^{†4}, Yuichi Ohsita ^{†5} and Hideyuki Shimonishi ^{†5}

^{† 1}Graduate School of Information Science and Technology, Osaka University, ^{† 2}Graduate School of Engineering, Osaka University, ^{† 3}Montessori Care Association Japan, ^{† 4}Advanced Network and DX Strategy Dept, NEC Corporation, ^{† 5}D3 Center, Osaka University

INTRODUCTION

Aging Society and Privacy Concerns

Monitoring individual privacy is essential. Monitoring individuals in private rooms while protecting

Falls of wheelchair uses

Falls are a major cause of fatal injuries especially wheelchair user.

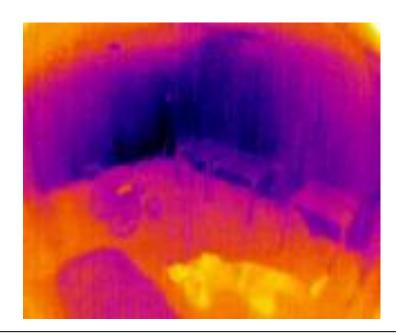
Caregiver Workload & Non-Urgent Slips

- Monitoring nursing home rooms heavily burdens caregivers.
- · Misclassifying slips as falls increases caregiver workload and risks overlooking real dangers.

Fall detection system with protecting privacy.

DEVICE CANDIDATES

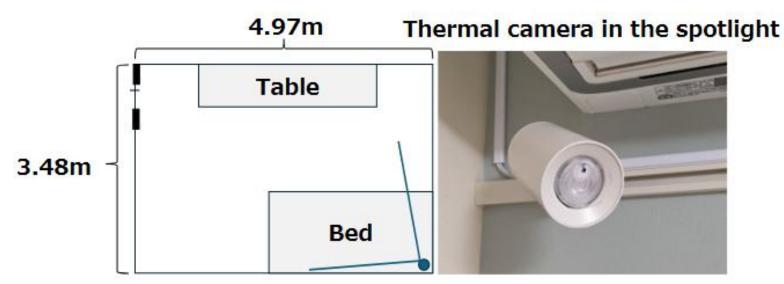
	Privacy	Non-invasive	Easy of use	Affordability	Accuracy
Wearable sensor	✓	×	×	✓	✓
Wi-Fi UWB	✓		×		×
RGB camera	×				✓
3D LiDAR	✓			×	×
Depth camera	✓				×
Thermal camera				✓	?


TECHNICAL ISSUES & CONTRIBUTIONS

- Existing video-based fall detection using CNNs.
- CNNs struggle to extract features from thermal images

Thermal images

- ✓ Lack of fine textures
- ✓ Rough silhouettes
- ✓ Blurry body parts
- ✓ Temperature noise



Fall Detection using CNN and Torso Features (FDCTF)

DATA COLLECTION

- Simulated private room environment.
- 10 to 30 seconds videos, fixed camera angle, one person
 - 39 fall events
 - 45 slip events
 - 23 daily activity videos

Simulated room layout and thermal sensor placement

Captured original image

Preprocessing

Emphasize the human figure

Getting features using YOLO

Bboxes & posture probabilities from YOLOv8

Image Features Extraction

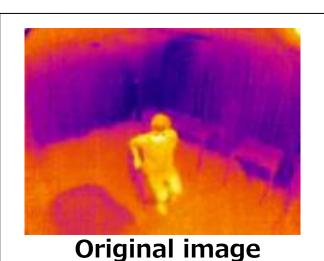
Getting torso features (Torso Angle Change)

Frame Level Prediction using LSTM

Frame → 'usual', 'under falling' or 'after falling'

Event Level Prediction

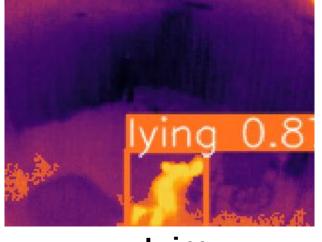
Event → 'caution' or 'emergency'


PREPROCESS & YOLO

Frame Level Prediction using LSTN

Event Level Prediction

Preprocessing

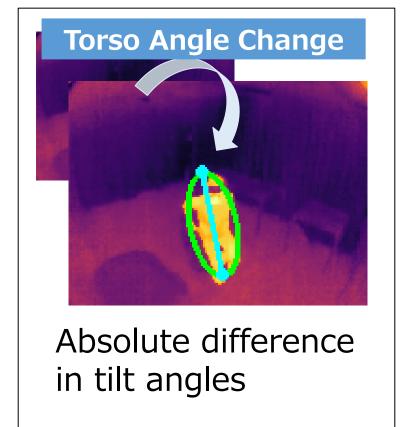


Training of YOLO model

- Detect person positions in images
- Output posture class probabilities:
 Sitting, Lying, Standing
- Train the model using the created dataset

Sitting & Head

Lying

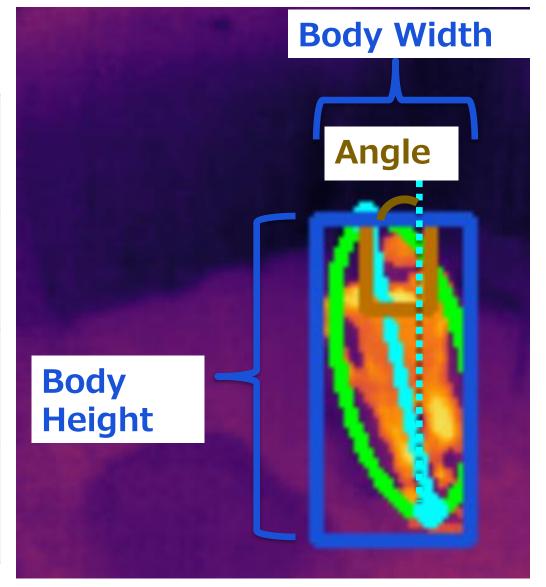

Crop and Binarize images

Extract Torso Angle

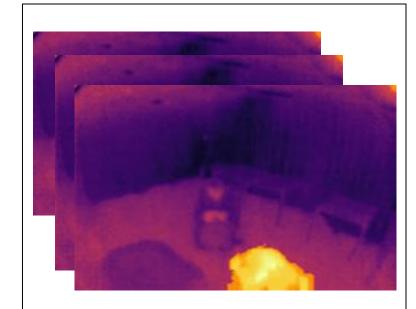
Torso angle

An ellipse is fitted to the silhouette

Calculate Torso Angle Change



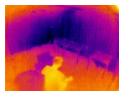
For better feature extraction using the bboxes.


Feature type	Feature	Abbreviation			
Torso	Torso Speed	TS			
Features	Head Z-coordinate	Z			
CNN	CNN Feature Vector	CFV			
Features	Posture Probabilities	PP			

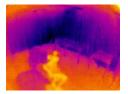
Other Torso features

Split video into 4-second

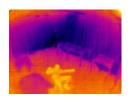
Frame Level Prediction


4-second video

Model


LSTM

Input: CNN & Torso feature


Prediction classification

'usual'

'under falling'

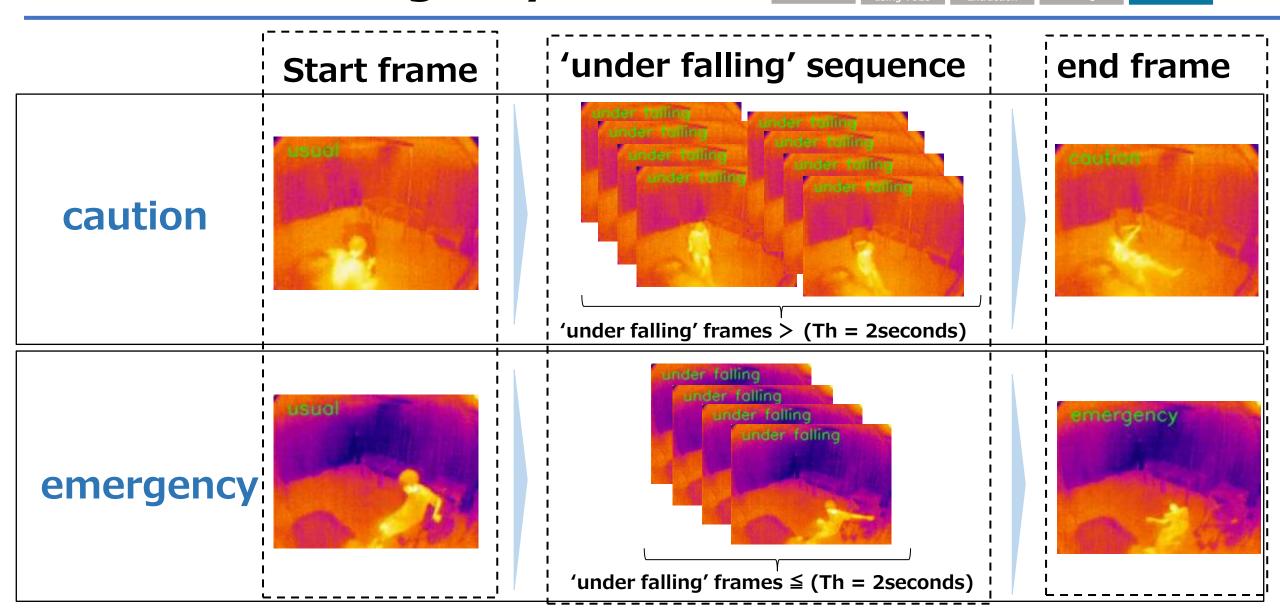
'after falling'

final frame label

- 1. 'after falling' frames (C) exceeding $C_{max} \rightarrow$ 'Pred Event.'
- 2. Differences(D) between the start frames ($D_{max} = 5$ -seconds)
- 3. D < $D_{max} \rightarrow \text{TP, D} \ge D_{max} \rightarrow \text{FN}$

Actual event1

Ground truth	0	0	0	0	0	0	1	1	1	D	red	1	1	+1	1	1	1	
Frame level prediction	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	•
		ı	ı	ı				D	= 5	I	<u></u>		1	C:	=8)


Caution / Emergency

eprocessing Getting fe

mage Features
Extraction

Frame Level Pred

Event Level 1 1

Single Environments Results

CFV(raw images)>CFV(thermal image)

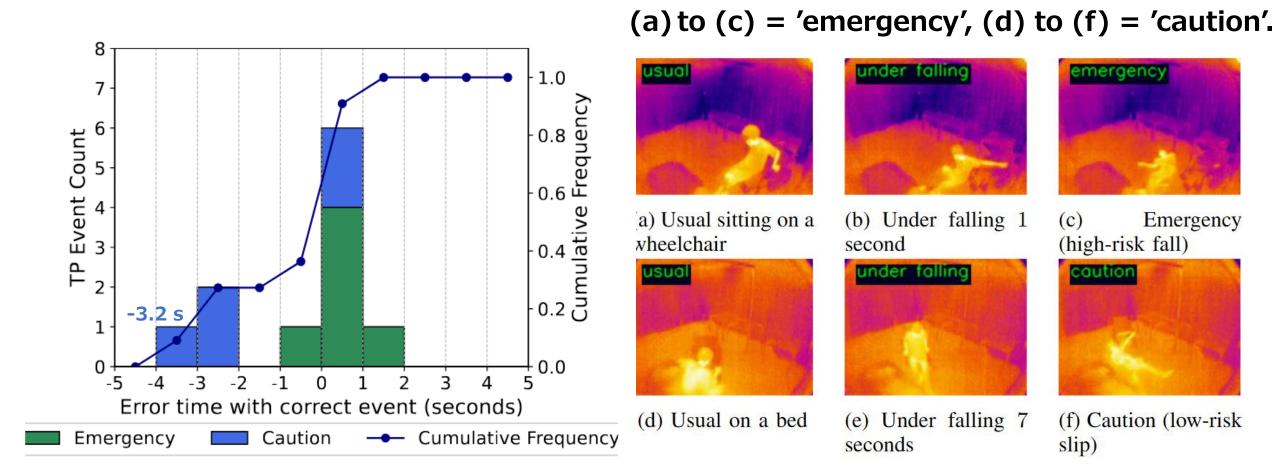
FDCTF methodonly CNN-based features

 CFV + PP +TAC is highest combination

LSTM ir	F1	
CNINI	CFV (from raw images)	0.56
CNN Features only	CFV (from binarized thermal image)	0.67
	CFV+PP	0.91
	CFV+PP+TAC	1.00
FDCTF	CFV+PP+Z	0.95
	CFV+PP+TS	0.96

Multi Environments Results

CFV(raw images)>CFV(thermal image)


FDCTF methodonly CNN-based feature

 CFV + PP +TAC is highest combination

LSTM i	LSTM input features					
CNN	CFV	0.56				
Features only	CFV+PP	0.67				
ures	CFV+PP+TAC CFV+PP+TAC +Multi(acc, tilt)	1.00				
FDCTF	CFV+PP+TAC +Multi(acc, tilt)	0.95				
	CFV+PP +Multi(acc, tilt)	0.96				

CFV+PP+TAC RESULTS

- CFV+PP+TAC: F1 score of 1.0 (≤ 3.2s)
- 5.2 FPS (CPU i7-9700K), 8 FPS (GPU RTX 2070)

Video: Emergency

Video: Caution

CONCLUSION & FUTURE WORK

Conclusion

- FDCTF combines CNN and torso features to improve accuracy.
- FDCTF meets requirements.
 - Privacy, Non-invasive, Ease of use, Affordable, Accuracy
 - Realtime running

Future work

Enhanced robustness in various environments:

- Different camera positions and angles
- Diverse individuals

Appendix

Video

Others