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Abstract—Transmitting a high data rate video to the cloud
for real-time processing purpose requires minimizing the la-
tency, maximizing the application requirements, and optimizing
power consumption for the entire system. In this study, we
employed a distributed video processing model for an object
detection task, assuming that video streams are captured by
robots operating in the licensed 28 GHz Milliwave network, en-
suring the stability of video uploads. Through the optimization
of power consumption, the system efficiently allocated video
analysis frames to appropriate devices, resulting in an 18%
decrease in overall power usage.

Index Terms—distributed video processing, 28 GHz
Millimeter-wave, object detection

I. INTRODUCTION

A digital twin is a virtual representation of a physical
object. It can be used to depict the current state or to predict
the future state of a machine, location, or an entire city. To
create a virtual representation of the real world, cameras
and other sensors are employed to collect data, in which a
substantial amount of data will be needed to be processed in
order to generate a real-time digital twin. Recently, AI and
deep learning (DL) techniques, such as image recognition,
have been developed to assist in analyzing sensor data to
comprehend real-world environmental contexts. These DL
algorithms typically run on a cloud server because of their
need for significant memory, CPU, and GPU resources.
Due to the current trend of using DL for data training
and prediction, the volume of data traffic sent to cloud
servers is increasing excessively. Consequently, electricity
consumption for both data transfer and cloud processing is
expected to surge in the near future [1]. Moreover, real-time
systems, such as IoT or object detection, typically have la-
tency requirements. To address the challenge of minimizing
the latency caused by transmitting data to a distant cloud,
distributed edge computing has been introduced [2].

In this paper, we 1) utilize and refine the distributed
edge computing model [2] to help minimize the power
consumption of the entire system, and 2) run simulations of
distributed video processing based on the millimeter-wave
(mmWave) throughput map.

The next section describes the use case applications
conducted under the mmWave network and discusses the
work of distributed edge cloud systems. Section 3 details the

optimized distributed video analysis system, including model
definition, power consumption optimization algorithm, and
related parameters. In Section 4, the 28 GHz mmWave
testbed environment and its characteristic is introduced.
Section 5 outlines the evaluation of the simulated distributed
video analysis system. The results are described in Section
5, and Section 6 concludes the paper.

II. RELATED WORK

A. Millimeter-wave Network Use Case

The mmWave band is the radio frequency range of
3–300 GHz (1–100 mm wavelength) in the 5G spectrum
[3]. Although frequencies under 6 GHz have already been
exploited, frequencies above 6 GHz are still largely available
and have been extensively researched in recent years to
understand their propagation mechanisms [4]. As the 1 GHz-
wide channels can offer a data rate of several Gbps, the use
of higher frequency ranges is promising; however, it comes
with a trade-off in signal losses due to penetration, reflection,
or diffraction.

Recently, with the availability of 60 GHz WiGig (IEEE
802.11ad) routers, many use case applications have been
developed and tested, such as Mobile VR Streaming [5]
and 360◦ video streaming [6], [7]. Additionally, for real-
time VR 360◦ video streaming, edge computing played a
role in facilitates video processing offloading and foveated
rendering [8], [9].

In contrast to the more prevalent unlicensed 60 GHz
bands, systems operating in the licensed 28 GHz band
are less common but offer increased reliability because of
the absence of interference from the same radio frequency.
Notably, a 4K UHD video streaming system utilizing the 28
GHz frequency achieved successful implementation, cover-
ing a distance of 400 meters. This system was specifically
designed for areas where the fiber network is inaccessible
[10]. Moreover, teleoperation of an industrial robot arm
using the 28 GHz frequency was successfully demonstrated
as well [11].

While many application studies have predominantly fo-
cused on video streaming tasks with users in static positions,
we simulated tests on a distributed video analysis system
specifically designed for object detection purposes on the 28



GHz band. In our scenario setting, the video transmission
device was assumed to be a robot that moves around the
environment while capturing the video streams and sending
them to edge or cloud servers to analyze the frame images.

B. Distributed Edge Cloud Computing

Cloud computing is a powerful centralized computing
paradigm with abundant CPU, GPU, and storage resources.
However, due to the limited number of data stations and
the distance to the end device, transmission latency can
occur depending on the network traffic. Therefore, edge
computing has been introduced to enable data processing
in close proximity to end devices, thereby reducing latency
in real-time systems [12].

Nevertheless, in video analysis applications, determining
the distribution of the processing load poses challenges
because there are network congestion, variations in com-
putational resources, and diverse application requirements.
Simply splitting the video processing pipeline between avail-
able edge and cloud servers [13] may not satisfy the latency
and accuracy requirements of applications because edge and
cloud servers have different computational capabilities and
distances from terminal devices. To address this, if an edge
server is incapable of handling a large DL model, splitting
the deep neural network pipeline can leverage edge resources
without relying solely on the cloud server [14]. However,
employing all servers leads to increased power consumption.

On the other hand, our approach involves splitting video
streams into frames and distributing them among terminals,
edges, or a cloud. This concept is illustrated in Fig. 1.
Initially, a terminal device may analyzes video frame images
for a designated portion. The analysis results, along with
the remaining unprocessed frames, are then transmitted to
the edge. The same process is repeated at the edge, and
the results, along with the remaining unprocessed frames,
are forwarded to the cloud. The cloud analyzes the final
set of frames required for video analysis accuracy. The
results from these three locations are integrated to obtain
the final analysis results. This distributed processing allows
for flexible distribution of processing across various devices.

Fig. 1. A distributed video analysis system.

III. DISTRIBUTED VIDEO ANALYSIS OPTIMIZATION

For a real-time application with timing constraints or a
video analysis application that requires high detection accu-
racy, meeting these requirements is essential. Additionally,

the construction of an edge-cloud system involving multi-
ple devices can lead to increased power usage. Therefore,
optimizing the entire system is beneficial for reducing the
energy consumption, which aligns with the global focus on
sustainable energy.

The system optimization model used in this study is
shown in Fig. 2. It encompasses the target system (i.e.,
video analysis application) in which each video session
entails an application request detailed requirements such
as recognition accuracy and processing latency. The video
stream originating from the terminal device’s camera un-
dergoes segmentation into frames and is subsequently dis-
tributed across different devices (terminals, edges, or cloud
server). The optimizer actively monitors the network’s
environment changes. It employs a Genetic Algorithm to
find the optimized control results, including processing por-
tions and the selection of AI models (in this study, Yolov3-
tiny, Yolov3, Yolov3-spp) for the system control module.
This control aims to satisfy predefined application latency
and object detection accuracy constraints while simultane-
ously optimizing the overall power consumption of the entire
system.

Fig. 2. System optimization model.

This distributed video analysis system is considered a
constrained combinatorial optimization problem that aims
to satisfy (1) the end-to-end processing time constraint (Ts),
(2) average video analysis accuracy constraint (As), and (3)
minimization of overall power consumption (P ).

argmin
Wd

s ,Md
s

P s.t. Ts ≤ Tmax
s , As ≥ Amin

s ,∀s ∈ S

Through this section, S is the set of video sessions
captured by the cameras. Each session (s) is processed by a
set of devices (Ds) and transmitted through a set of networks
(Ns). The optimization problem is defined as follows:

F = −P +
∑
s∈S

min(Tmax
s − Ts, 0)α

f

+
∑
s∈S

min(As −Amin
s , 0)βf ,

(1)

where are αf and βf hyperparameters representing the
penalty factors for latency and accuracy violations, respec-
tively, and are set to be 106.



A. Total Power Consumption

P =
∑
d∈Ds

P d +
∑
n∈Ns

Pn. (2)

P d is the power consumption of device d and Pn is that of
network n.

We estimate the P d by combining the device’s idle power
(PIdle), CPU power, GPU power, and base power adjustment
(γPower-base) as follows:

P d = PIdle + PCPU-TDPL
d
CPUγCPU-TDP

+PGPU-TDPL
d
GPUγGPU-TDP + γPower-base.

(3)

The PIdle is determined by measuring the device’s power
when turned on and not engaged in any tasks other than
running the Ubuntu 20.0 operating system. The values for
PCPU-TDP and PGPU-TDP are the maximum power consumption of
the CPU and GPU, respectively. These values are sourced
from the hardware catalogue. The coefficients γCPU-TDP and
γGPU-TDP are determined through regression analysis conducted
during the system measurement process.

The estimated load of the CPU (Ld
CPU) is defined as

follows:

Ld
CPU =

∑
s∈Sd

(αCPUW
d
s + βCPUW

′d
s ) + γCPU-base, (4)

where Sd is the set of sessions running on the device d.
W d

s denotes the number of frames per second analyzed on
the current device. W ′d

s denotes the number of frames per
second received from previous device but unprocessed and
sent to the next device.

The coefficients αCPU and βCPU correspond to analyzed
frames and bypassed frames. The γCPU-base represents the
base CPU load primarily utilized for running the operating
system. These value are also determined through regression
analysis.

Next, the estimated load of the GPU (Ld
GPU) is defined as

follows:

Ld
GPU =

∑
s∈Sd F d

s

CdEd
, (5)

where F d
s represents the FLOPS necessary for processing a

session s. Cd reflects the GPU’s capability in 32-bit floating-
point (FP32) calculations on the device d, obtained from the
graphics card specifications. Ed is the estimated efficiency of
FP32 calculations for the GPU on the device d, determined
through regression analysis of the measured data.

The F d
s is modeled as follows:

F d
s = (OM +Od

A)W
d
s +Od

BW
′d
s , (6)

where OM represents the number of FLOPS for the model-
dependent part of video processing, as obtained from the
AI model specification (Table I). Od

A is the FLOPS in
model-independent part of video processing, and Od

B is the
FLOPS used in the fixed processing part for each device
d. These parameters were determined through regression

analysis based on the measured data and are depicted in
Table II and Table III.

TABLE I
THE MAP AND FLOATING OPERATIONS OF THE AI MODELS

Model mAP FP32 operations (OM )
Yolov3-tiny 33.1% 5.6B / frame
Yolov3 55.3% 65.9B / frame
Yolov3-spp 60.6% 141.5B / frame

TABLE II
DEVICE SPECIFICATION

Terminal Edge Cloud
CPU Type i7 8700T i9 10940X Xeon Gold 6330 x2
PCPU-TDP 35 Watt 165 Watt 205x2 = 410 Watt
Nvidia GPU Type GTX 1070 RTX A5000 Tesla A100
FP32 [TFLOPS] (Cd) 6.463 27.77 156
PGPU-TDP 150 Watt 230 Watt 400 Watt
Idle power (PIdle) 21.3 Watt 98.3 Watt 212.8 Watt

TABLE III
SYSTEM PARAMETER

(FROM REGRESSION ANALYSIS OF THE MEASUREMENT DATA)

Terminal Edge Cloud
GPU Load
FP operation efficiency (Ed) 0.417 0.495 0.187
FLOPs A per frame [BFLOPs] (Od

A) 2.05 14.60 22.12
FLOPs B per frame [B FLOPs] (Od

B) 0.189 0 0
CPU Load
Analyzed frame coefficient (αCPU) 0.186 0.145 0.139
Bypassed frame coefficient (βCPU) 0.265 0.025 0
Base load [Watt] (γCPU-base) 15 1.85 2.20
Power Consumption
CPU TDP coefficient (γCPU-TDP) 1.98 0 0
GPU TDP coefficient (γGPU-TDP) 0.7 1.53 0.95
Base power [Watt] (γPower-base) 11.6 30.2 22.1

B. Session Latency

Ts =
∑
d∈Ds

T d
s +

∑
n∈Ns

Tn
s ≤ Tmax

s , (7)

T d
s is the video analysis time for one frame on device

d ∈ Ds. Tn
s is the transmission delay for one frame on

network n ∈ Ns. Tmax
s is the maximum time constraint for

the session.
The T d

s is calculated as follows:

T d
s =

OM +Od
A +Od

B

CdEdLd
GPU

, (8)

where each component is explained in Equation (5) and (6).

C. Session Accuracy

As =
Σd∈Ds

AMd
s W d

s

|Ds|
≥ Amin

s , (9)



where, Amin
s is a session minimum accuracy constraint. Md

s

is the AI model that is selected to process the video session
s on the device d. Its accuracy AMd

s is given by the value
of the mean average precision (mAP) of the AI model’s
recognition accuracy. W d

s represent the processing portion
of the video frames.

D. Network Model Equations

The transmission delay and power consumption in a net-
work node were not measured in this study, as we considered
them to be part of the public infrastructure. Therefore, we
assume that the available bandwidth in the network cannot
be predetermined but is measured in real time when the
video stream is sent through network. The computational
model for the power consumption Pn and network latency
Tn
s are assumed as follows:

Pn =
∑
s∈S

M
(
1−

∑
d∈D′

s

(W d
s +W ′d

s )
)
pn, (10)

Tn
s = M

(
1−

∑
d∈D′

s

(W d
s +W ′d

s )
)
/Bn, (11)

where M is the number of bits per frame. pn is the power
consumption for one bit transmission on the network n. Bn

is the bandwidth available at time t on the network n given
as input in the simulation. D′

s is the set of devices that
session s has passed. This means that the network bandwidth
will not be consumed if there is no data transmit to the next
device.

IV. EXPERIMENTAL MMWAVE ENVIRONMENT

We have a 28 GHz testbed network installed on a campus
building. The mmWave base stations are constructed at a
ceiling height of 2.7 meters from the floor. The building
has floor dimensions of 20x40 meters. The mmWave spec-
ifications are presented in Table IV. Due to the nature of
mmWave, it is susceptible to deterioration from shielding
and inference caused by obstacles. Therefore, three base
stations were installed to guarantee optimal communication
quality.

The Reference Signal Received Power (RSRP) from each
base station (BS) over the area is shown in Fig. 3. The
circles represent the measured position (typically every 2x2
grid meters), and their color depicts the value measured at
a height of 1 meter from the floor. The value less than -
100 dBm is considered a bad signal. The red square with
a number on the map shows each base station position.
The arrow shows beamforming direction, set to an elevation
angle in the range of -15◦ to +15◦, and an azimuth angle in
the range of -45◦ to + 45◦.

BS#1 was installed in a student room, which contains
only tables and chairs (no high obstacles in the area). The
RSRP signal was in good condition for the area in front
of the base station. BS#2 was installed in the reception
area, where the RSRP signal propagated along the horizontal
pathway inside the building. The measurements show that

the signal degrades approximately 15 meters away from the
base station in the orthogonal direction along the wall. BS#3
was installed on one side of the pathway. The RSRP signal is
in good condition through the path in the front direction over
34 meters, but degrades in both the left and right directions,
which are the non line of sight areas.

We also measured the upload bandwidth across the floor
through a connection with each base station. The maximum
upload bandwidth among the base stations, ranging from 18
to 48 Mbps (mean 39.5, SD 8.7), is shown in Fig. 4.

TABLE IV
MILLIMETER-WAVE SPECIFICATIONS OF
RV1302-00M1 5G NSA BASE STATION

Components Details

Radio frequency Licensed 28 GHz (Band n257)
Center frequency DL: 28.75008 GHz, 28.85004 GHz,

28.95000 GHz, 29.04996 GHz
UL: 28.75008 GHz

Channel bandwidth DL: 400 MHz (100 MHz x 4CC)
UL: 100 MHz

Antenna Directional antenna × 64 (8×8)
Polarization (Vertical/Horizontal)

Transmission power (TRP) -10 – +25 dBm
Antenna gain 5 dBi/antenna + 18 dB
Maximum EIRP 63 W/+48 dBm
Primary modulation method QPSK, 16QAM, 64QAM
Modulation method DL: OFDM, UL: OFDM
Duplex method TDD (Synchronous TDD)
Radio type X7W

V. EVALUATION OF DISTRIBUTED VIDEO ANALYSIS

We assumed a scenario where robots operate in a desig-
nated area, such as in a campus or a warehouse, with the pur-
pose of finding objects. In this context, the robot functions
as a terminal device responsible to capture the environment
and uploads video streams to edge and cloud servers for
object detection analysis. The network throughput conditions
were subject to changes depending on the current position of
the robot. In particular areas, where the radio signal is low
can lead to fluctuations in network bandwidth. Moreover, in
scenarios where multiple robots are co-operating in the same
area, network congestion would occur, thereby, affecting the
transmission delay.

In this simulation, the paths of the robots are established
according to Fig. 5, which shows the variation of the network
upload throughput along each path. Each circle mark on
the map represents the measured throughput position. We
determined the robot to take 60 seconds to move to each
circle mark, and it required an additional 60 seconds for
rotation. In total, it takes 1,440 seconds (24 minutes) for the
robot to complete one path.

By following the green path, the robot traversed a low
uplink bandwidth area of 28 Mbps for two minutes. On
the yellow path, the robot will encounter 21-27 Mbps
for two minutes. The blue path entails the robot passing



Fig. 3. RSRP value map for each base station

Fig. 4. Maximum Upload bandwidth map of all base stations

Fig. 5. Robot paths

through a low uplink bandwidth range of 18-27 Mbps
for 14 minutes, which is almost half of its total runtime.
When there are more than two robots operate in the same
network environment, the upload throughput is divided by
the number of robots. Each robot is assumed to equip with
two cameras, each capturing a video stream at a 1920×1080
pixel resolution, with an average data rate of 6 Mbps (12
Mbps for two video sessions) sent to the edge or cloud
servers to process the videos. The results of the video
analysis are the bounding box area of the object detected,
object name, and confidence value. Fig. 6 show the video
analysis results overlaid on input video frame image.

Based on the observation, the cloud server we used
in this study is the most power consumption efficient in
processing video analysis compared to terminal and edge
servers. Therefore, when there is no network congestion,
the optimization algorithm typically selects a cloud server
to handle a video session.

Fig. 6. Video analysis results when overlaid on input video frame image.

VI. RESULTS

A. Simulation results when running one robot
First, we conducted simulations with one robot at a time

on each path (green, yellow, and blue). The application’s
maximum latency requirement (Tmax

s ) was 0.1 ms for both
video sessions, and the minimum object detection accuracy
(Amin

s ) requirements were 0.6 and 0.5 for each session.
These constraints are consistent for the robots on different
paths.

Fig. 7 (a) shows results of total power consumption,
latency, and accuracy when one robot is operated in the
environment. The total power consumption is less than 400
watts for all three paths, as the throughput of mmWave
network is enough for transmitting two video sessions to
process at the cloud server. For the blue path which including
low bandwidth areas, the sessions latency is slightly higher
than other paths, however not exceeded the requirement of
0.1 ms, therefore no latency violation occurs. No violations
in object detection accuracy have been observed.

B. Simulation results when running two robots
Next, three simulations involving the operation of the

two robots were conducted with combinations of each of



the following two paths: green+blue, green+yellow, and
yellow+blue. The application’s maximum latency require-
ments (Tmax

s ) were 0.1, 0.1, 0.2, and 0.05 ms for each
video session, and the minimum object detection accuracy
requirements (Amin

s ) were 0.6, 0.5, 0.6 and 0.3 for each
session.

The simulation results are shown in Fig. 7 (b). The total
power consumption when operating the two robots was
slightly higher than that when operating one robot. This is
because one more terminal device (robot) is increased. In
the green+yellow path, which has a relatively high band-
width, all computations are sent to the cloud, resulting in a
stable and the lowest power consumption. However, for the
green+blue and yellow+blue paths, where the robots traverse
areas of low bandwidth, leading to session latency exceeded
the 0.2 ms requirement; therefore, a portion of the video
frames is allocated the terminal device to help process them.
This results in an increase of the total power consumption,
as the terminal device need to run GPU to conduct a video
analysis. Despite this, there are also no violations of object
detection accuracy observed in the simulation with the two
robots.

C. Simulation results when running three robots

Finally, simulations were performed using three robots
in the environment. The application’s maximum latency
requirements (Tmax

s ) were set to 0.05, 0.05, 0.1, 0.1, 0.2
and 0.2 ms for each video session, and the minimum object
detection accuracy requirements (Amin

s ) were 0.3, 0.3, 0.5,
0.5, 0.6 and 0.6 for each session.

We compared two scenarios: one with power optimization
(the default condition for previous simulations), and another
without power optimization. In the absence of power opti-
mization settings in the algorithm, the video analysis tasks
were allocated to all available devices (terminal, edge, and
cloud servers); hence, the total power consumption exceeded
1,000 watts. However, when running the system with power
optimization, the video analysis tasks were allocated only to
terminals and the cloud server, resulting in a decrease in the
total power usage to approximately 800 watts.

Latency violation also occurred for both simulations due
to the robots operating in low-bandwidth areas (blue path).

In this simulation, although latency violations were ob-
served, there were no instances of object detection accuracy
violations. This was attributed to the combined utilization of
distributed terminals, edges, and cloud server, which proved
capable of sustaining the analysis.

VII. CONCLUSION

In this study, we applied the optimized distributed video
analysis model to a scenario involving robots detecting
objects. We took the real measured of 28 GHz mmWave
network uplink bandwidth in the environment, ensuring a
realistic representation of environmental conditions for the
simulation. Our evaluation involved a comprehensive set of
simulations, assessing the performance of the distributed

video processing model in scenarios with one, two, and
three robots navigating various paths within the environment,
taking and sending the video stream to the edge-cloud server
for object detection processing. With the power consumption
optimization, the system efficiently allocated video analysis
frames to suitable devices. Resulting in 18% reduction
in power consumption on a scenario where three robots
capturing 1080p video of the environment on the mmWave
network over a 24 minutes duration.
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Fig. 7. Simulation results of distributed video analysis when operating robots in mmWave environment for 24 minutes (1440 seconds).


