
Energy Optimization of Distributed Video
Processing System using Genetic Algorithm with

Bayesian Attractor Model
Hideyuki Shimonishi

Osaka University
Osaka, Japan

shimonishi.cmc@osaka-u.ac.jp

Masayuki Murata
Osaka University

Osaka, Japan
murata@ist.osaka-u.ac.jp

Go Hasegawa
Tohoku University

Miyagi, Japan
hasegawa@riec.tohoku.ac.jp

Nattaon Techasarntikul
Osaka University

Osaka, Japan
techa.nattaon.cmc@osaka-u.ac.jp

Abstract—For the future cyber-physical system (CPS) society,
it is necessary to construct digital twins (DTs) of a real world in
real time using a lot of cameras and sensors. Video analysis
for this purpose is expected to consume a large amount of
traffic and power when all distributed data are gathered to
the centralized data center. Hence, the energy efficiency of both
networks and computers is a major challenge for the full-scale
spread of CPSs and DTs. Toward this goal, we first propose a
model to arbitrarily split and distribute the video analysis task to
terminals, edge servers, and cloud servers and dynamically assign
appropriate CNN models to them. System-wide optimization of
such distributed processing can reduce overall system power con-
sumption by reducing network bandwidth and efficiently utilizing
distributed CPU/GPU resources. To realize this optimization in
a real system, we also propose a model to estimate the GPU
load, processing time, and power consumption of these devices
based on massive experimental measurements. However, such a
large-scale optimization is difficult because of the dynamic and
multi-objective nature of the problem. We also found that due
to the complexity and diversity of the real system, there are a
large number of local optimum solutions in the solution space
and it is difficult to find a global optimum solution. To solve the
problems, we propose a new optimization algorithm composed
of Genetic Algorithm and Bayesian Attractor Model. Finally,
simulation evaluations are performed to demonstrate that the
proposed method can minimize system power consumption and
satisfy latency and recognition accuracy requirements of each
video analysis, even under changing environmental conditions.

Index Terms—Digital twin, video analysis, system optimization,
energy efficiency, genetic algorithm, Bayesian Attractor Model

I. INTRODUCTION

By constructing a cyber-physical system (CPS), for exam-
ple, a digital twin (DT) of a warehouse, factory, mall, airport
or even an entire city, real-time AI analysis of environmental
data is expected to be increasingly used. The DT is constructed
by collecting a large amount of data observed by sensor
devices such as cameras and LiDARs via a network to a data
center. Data processing requires a large amount of CPU/GPU
resources to make decisions about recognition, identification,
analysis, and actuation in the real world. In this way, the
volume of traffic to be processed is expected to increase
rapidly toward 2030 [1], especially for new applications in the
era of 6G [2]. As a result, electricity consumption for both data
transfer and processing is expected to increase at a very high
rate in the near future [3]. Hence, the energy efficiency of the

entire system is a major challenge for the full-scale spread of
CPSs and DTs.

For DT applications, latency minimization is very impor-
tant and, therefore, distributed processing is needed to take
advantage of computing at terminals and edges, rather than
collecting all data in the cloud [4]. Such distributed processing
can reduce overall system power consumption by reducing net-
work bandwidth and efficiently utilizing distributed CPU/GPU
resources. However, this is not a trivial reallocation process
from a cloud to edges or terminals; since it is not obvious
when, where, and how much to reallocate.

To maximize distributed processing efficiency, it is essential
to optimize both network resources and computing resources
in an integrated manner. Although various studies have been
conducted [4]–[7], few of them further integrate application
processing optimization, such as joint optimization with video
analysis algorithms. In distributed video analysis, processing
time and analysis accuracy depend not only on the status of
network and computing resources but also on the selection
of video analysis algorithms. For instance, different CNN
models have a trade-off between recognition accuracy and
computing cost, which also affect processing time, and the
distribution of the CNN processing task potentially has a
trade-off between computing resource and network resource
utilization. More importantly, these trade-offs are mutually
interrelated. Therefore, we can expect further optimization of
performance and power consumption of the distributed system,
by totally integrating these factors.

In this paper, our challenge aims at integrated optimization,
in particular, to minimize the power consumption of the
entire system while satisfying constraints such as recognition
accuracy and processing delay of each video analysis. In
the next section, we describe the formal definition of the
system architecture and mathematical model and then propose
component modeling to estimate the GPU load, processing
time, and power consumption of these devices based on
massive experimental measurements and regression analysis.
We also present the proposed optimization method composed
of Genetic Algorithm (GA) [8] and Bayesian Attractor Model
(BAM) [9], followed by performance evaluation and conclu-
sion.

II. DISTRIBUTED VIDEO ANALYSIS

When targeting the distributed video analysis described in
the previous section, there are various possible approaches to
decompose the video analysis. The most simple approach is
to reallocate CNN processing from the cloud to the edge or
terminal. However, in this case, it is difficult to arbitrarily
distribute the processing load, as specific video sessions are
processed entirely at the terminal, edge, or cloud. CNN
processing cost is fairly large, and the edge or terminal has a
relatively smaller computational capacity, so it is sometimes
difficult to place CNN processing on the edge or terminal.

The more flexible allocation is to split and distribute the
CNN pipeline, for example, the first half of the CNN layer to
the edge and the last half to the cloud [10]. This approach may
increase data traffic between the edge and the cloud, hence,
the authors have proposed determining the best split point to
minimize the traffic between them. A similar but more coarse
approach is also used to split the video processing pipeline
between edge and cloud servers [4]. Since each pipeline
component is an independent processing unit, it is easy to
split the load over the network. The authors have proposed an
optimization scheme that takes into account the characteristics
of each component of distributed applications. However, these
approaches proposed a way towards splitting where the size
of each split unit cannot be arbitrarily determined, and thus
fine-grained computation task distribution is still a challenge.

Another approach is the division of the processing load in
the time sequence; that is, video streams are split into frames
and the frames are distributed to the terminal, edge, or cloud.
As shown in Fig. 1, a video image captured by a camera is
analyzed at the terminal for a certain portion of the frames,
then the results of the analysis and the remaining unprocessed
frames are sent to the edge. The same process is performed
at the edge, and the results of the analysis at the terminal and
the edge, as well as the remaining frames that have not been
processed by either of them, are sent to the cloud. Finally,
the cloud analyzes the remaining frames necessary to achieve
the required video analysis accuracy. The results analyzed at
these three locations are then integrated to produce the final
analysis results. This kind of distributed processing enables
the distribution of processing in any ratio on various devices,
and thus we can optimize the entire system.

Fig. 1. Distributed Video Analysis Model

III. SYSTEM OPTIMIZATION STRATEGY

In this study, we target the above-mentioned distributed
video analysis system and investigate dynamic joint opti-

mization of network, computing, and application (distributed
video recognition via CNN). Many algorithms have been
proposed to solve various optimization problems. For example,
a virtual network assignment [11] is proposed using integer
programming that incorporates the Markov Decision Process.
Deep Reinforcement Learning is combined for long-term total
cost optimization [12], and the deep neural network is used to
optimize the number of resources allocated to the radio access
network [13].

However, the difficulty in solving the optimization problem
of distributed video analysis is its highly heterogeneous system
and highly changing environment. For example, a network
may be constructed of wired or wireless links that have very
diverse characteristics. In particular, the performance of the
wireless network is highly fluctuated and difficult to predict.
The computational resources available on devices (terminal,
edge server, or cloud server) are also varied, especially if they
are equipped with different generations of GPUs. Furthermore,
from an application point of view, the optimal strategy for each
task is different because the maximum delay and recognition
accuracy required for each type of task, such as person
identification or vehicle collision avoidance, are different.

Therefore, we focus on GA [14], [15] to solve this multi-
objective dynamic problem. The challenges in using GA are
the convergence time and the local optimization problem. The
former is that convergence to a new optimal solution takes
time, especially when large environmental changes occur.
The latter is that since the system modeled in this research
is complex and heterogeneous, it could happen that many
local optimum solutions exist and that global optimal solution
cannot be reached no matter how much time is spent in
evolution. To solve these problems, many advanced algorithms
have been proposed to increase the diversity of the population
[16], [17], however, they still struggle with the problem of
convergence time.

In this study, we investigate the evolution of populations
by introducing various external genes in order to react to
large environmental changes. We assume that environmental
changes occur periodically, and thus we retain some optimal
genes obtained in the past experience. When the current
environment is similar to the one in the past, the genes
that have been retained are introduced into the population.
Therefore, the proposed method needs to continuously monitor
the current environment status, which is a high-dimensional
information that contains network status, device status, session
information and system topology. The inference problem of
identifying the current environment status with the retained
past status is very challenging due to high-dimensional and
noise in the input information. For example, the monitored
and estimated bandwidth available at wireless access links is
not only inaccurate but fluctuating all the time. To this end,
we propose using the BAM, which is known as one of the
cognitive models of the human brain, to continuously identify
the states of the system from noisy observations.

IV. SYSTEM MODEL

A. System Architecture

Our proposed system model is shown in Fig. 2. Each video
stream from the camera is split into frames. The frames are
then distributed to the terminal, edge, or cloud to meet its
requirements of end-to-end processing time (the sum of the
processing delay at the devices and the transmission delay
at the networks) and the recognition accuracy of the video
analysis (the weighted average of the recognition accuracies
at the devices by their respective processing portions). The
optimizer takes this information as constraints and calculates
system control information consisting of processing portion at
each device and its CNN model applied to minimize power
consumption of the entire system (devices and networks)
yet satisfy the constraints. The reason is that the available
resources on networks and servers are changing over time, and
thus the optimizer continuously monitors these environmental
changes and dynamically recalculates the system control in-
formation.

Fig. 2. System Model.

B. Mathematical Model

We define the optimization of this distributed video process-
ing system as a combinatorial optimization problem, which
is expressed in the following three equations: (1) constrain
the end-to-end processing time per frame, (2) constrain the
average video analysis accuracy, and (3) minimize the overall
power consumption of the system. In this study, the optimiza-
tion problem is to find the best combinations of processing
portions and CNN model selections that satisfy both equations
(1) and (2) and minimize equation (3).

The first equation is the processing time constraint, as
follows:

Ts =
∑
d∈Ds

T d
s (t) +

∑
n∈Ns

Tn
s (t) ≤ Tmax

s ,∀s ∈ S (1)

where S is the set of all video sessions, Ds is the set of devices
used by session s. Ns is the set of networks (access/backbone)
used by the session s. Ts is the end-to-end processing time of
session s and Tmax

s is given as its maximum constraint. T d
s (t)

is the video analysis time for one frame on device d of session
s at time t, and Tn

s (t) is similarly the transmission delay for
one frame on network n, which is defined in the next section.

The second equation is the accuracy constraint as follows:

As =
Σd∈DsAMs

s (t)W d
s (t)

|Ds|
≥ Amin

s ,∀s ∈ S (2)

where As is the video recognition accuracy of session s and
Amin

s is given as its minimum constraint. Md
s (t) is the CNN

model selected by session s on device d. and its accuracy is
given by the value of the mean average precision (mAP) of
the recognition accuracy. Let W d

s (t) be the portion of video
frames from session s and processed on device d. Note that we
let W d

s (t) = 0 if W d
s (t) < 0.1 to avoid inefficient allocation

and encourage the less loaded device to turn off the power.
|Ds| is the number of devices that session s is using, which
is 3 for our system model shown in Fig. 2.

Finally, the total system power consumption P is the sum
of the power consumption of all devices Ds and networks Ns

used by all sessions. Let P d(t) be the power consumption of
device d and Pn(t) be the power consumption of network n.

P =
∑
d∈Ds

P d(t) +
∑
n∈Ns

Pn(t) (3)

In the next section, equations (1) to (3) are used as functions
of the processing portion W d

s (t) and the selection of the CNN
model Md

s (t).

V. COMPONENT MODELING

A. Device model

Fig. 3 shows photos of our experimental system for testing
digital twin applications. The devices, including terminals,
edge servers, and cloud servers, are tested in this section.
Cameras are installed at the corners of the ceiling, and the
field contains robots and objects.

Fig. 3. Tested Devices.

As part of the mathematical model described above, we
modeled the devices by performing massive experimental
measurements using three types of devices, IA1, IA2 and IA3
shown in Table I. The devices IA1 and IA2 are used as a
terminal or an edge server, whereas IA3 is used for the cloud
server. Explanations on the specifications are given later in
this section.

We used the Yolo-v3 implementation [18] for video anal-
ysis. We have downloaded pre-trained CNN models from the
same site. The mAP and the number of floating operations per

TABLE I
DEVICE SPECIFICATION

Device IA1 IA2 IA3

CPU Core i7
8700T

Core i9
10940X

Xeon GOLD
6226R x2

CPU TDP 35W 165W 150W x2

GPU Nvidia
GTX 1070

Nvidia
RTX A5000

Nvidia
Tesla T4

GPU (FP32) 6.463 Tflops 27.77 Tflops 8.141 Tflops

GPU TDP 150W 230W 70W

frame of the models are also obtained from the same site using
MS-COCO dataset, and we used the same values as listed
in Table II. The video [19] from YouTube Bounding Boxes’
Object Detection in Video Segments-validation set [20] was
used as the evaluation video and correct answer labels in this
experiment.

Using the devices described above, we varied the number
of video sessions and the processing portion in various ways
and measured GPU utilization and power consumption of each
device, the processing time per frame, and mAP. Then, we
have developed models to estimate these values.

TABLE II
CNN MODELS

Model mAP Floating operations

Yolov3-tiny 33.1% 5.6B / frame
Yolov3 55.3% 65.9B / frame
Yolov3-spp 60.6% 141.5B / frame

1) GPU load model: We first propose a model to estimate
the GPU load of a device (one of the devices in Table I).
Based on the analysis of the measured data, we found that
the GPU load, obtained from nvidia-smi command, is almost
proportional to the estimated floating point operations per
second (FLOPS) on the device, and thus we build a model
to estimate the GPU load Ld(t) of the device d as follows:

Ld(t) =

∑
s∈Sd Od

s (t)

CdEd
(4)

where Od
s(t) is the FLOPS estimate of session s, and Sd is

the set of sessions on the device d. Cd is the performance
of the GPU for the calculation of floating point (FP) 32
on the device d, which is shown in Table I, and Ed is the
estimated FP32 calculation efficiency of the GPU on the device
d determined by regression analysis of the measured data and
shown in Table III below. We also found that the model fits the
experimental results if we assume that the FLOPS estimation
of a video session consists of two parts; CNN processing and
fixed processing. CNN processing part is the sum of the model-
dependent part and the model-independent part, and its FLOPS
is proportional to the number of frames processed. On the
other hand, the fixed processing part is the overhead processing
other than CNN, such as decoding/encoding, and its FLOPS

is proportional to the total number of frames received by the
device. Therefore, Od

s(t) is modeled as follows:

Od
s(t) = ((OMd

s (t) +OA)W d
s (t) +OB)FPS (5)

where, OMd
s (t) is the number of floating operations (FLOPs) of

the model-dependent part of CNN processing shown in Table
II selected by session s on device d, and OA is the model-
independent part of CNN processing and is shown as Floating
operation A in Table III. For example, in the case of Yolo-v3,
they are 65.9B:1.5B per frame, and thus the model-dependent
part is the majority. OA is the FLOPs of the fixed processing
part and is shown as Floating operation B in Table III. This
part is much smaller than CNN processing, as expected, but is
also needed for accurate GPU load estimation. FPS is the
number of frames per second, and the sample video used
in this paper is encoded at 30 fps. These parameter values
were obtained by regression analysis based on the measured
data. Fig. 4 shows the comparison between the measured GPU
load and the estimated GPU load for these three devices.
The estimation error increases slightly in the very high load
situation, but is still within 10%. The Rooted Mean Square
Error (RMSE) of the estimation was 4.9%.

TABLE III
GPU MODEL DATA

IA1 IA2 IA3

GPU efficiency (Ed) 0.4 0.48 0.39
Floating operations A (OA) per frame 1.5B 8.1B 2.2B
Floating operations B (OB) per frame 0.1B 0.4B 0.1B

Fig. 4. GPU load estimation accuracy

2) Processing time model: Next, we propose a model to
estimate the processing time of a frame. Based on measure-
ment data analysis and the above GPU model, we build the
processing time model by the total FLOPs of CNN processing,
including model-dependent and model-independent parts, and
fixed processing divided by GPU capability and load. Thus,
we obtained an estimation equation for the processing time of
a frame, T d

s (t), as follows:

T d
s (t) =

OMd
s (t) +OA +OB(t)

CdEdLd(t)
(6)

Fig. 5 shows the comparison between the measured and
estimated processing times for three devices. The RMSE of
the estimation was only 1.7 msec, which was very accurate.

Fig. 5. Processing time estimation accuracy

3) Power consumption model: Finally, we propose a model
to estimate the power consumption of a device. We assume that
power consumption is the sum of CPU power consumption,
GPU power consumption, and idle power, and we propose a
formula for the power consumption P d(t) of the device d as
follows:

P d(t) =

P d
IDLE + P d

CPU−TDPα
p

+P d
GPU−TDPL

d(t)βp if Ld(t) > 0

0, otherwise
(7)

where P d
CPU−TDP and P d

GPU−TDP are Thermal Design
Power (TDP), i.e. a maximum power consumption, of the
CPU/GPU, which we obtained from their catalog as shown in
Table I. P d

IDLE is measured as a minimum power consumption
of a device when we run the device without running any
processes other than OS. The idle consumption for IA1, IA2
and IA3 was 21.3W, 98.3W, and 247.3W, respectively. Since
it was difficult to obtain a clear estimate of CPU load through
the measurement data because other processes are running on
the same device, we used a common value for all cases. Then,
the values of (αp, βp) were determined by regression analysis
as (0.97, 0.78), (0.97, 0.67) and (0.29, 0.81) for IA1, IA2
and IA3, respectively. We also assume that if there is no load
on the device, it should be powered off, and thus the power
consumption is zero.

Fig. 6 shows the comparison between the measured and
estimated power consumption for three devices. The actual
power consumption of a device was measured using a watt
meter connected to the AC input of the device. Unfortunately,
the power estimation is not very accurate due to various
reasons, including the difficulty in estimating CPU load and
power consumption by cooling fans and others. As a result,
the RMSE was 24.2W, and an accurate estimate of power
consumption is a future issue.

B. Network model

Transmission delay and power consumption in a network
node are not measured in this paper as we consider them to be
part of the public infrastructure. The access network would be
cellular networks and the core network would be a large-scale

Fig. 6. Accuracy of Power Consumption Estimation

fiber optic network, which is shared by many users. Therefore,
we assume that the available bandwidth on the network cannot
be predetermined and is dynamically measured in real time
when the video stream uses the network. We also assume that
the power consumption for this task is only proportional to
the amount of data sent over the network. Thus, we modeled
the computational model for network latency Tn

s (t) and power
consumption Pn(t) as follows:

Tn
s (t) = M

(
1−

∑
d∈Ds,n

pass

W d
s (t)

)
/Bn(t) (8)

Pn(t) =
∑
s∈S

M
(
1−

∑
d∈Ds,n

pass

W d
s (t)

)
pn (9)

where M is the number of bits per frame, Bn(t) is the
bandwidth available at time t on the network n, and pn is the
power consumption for one bit transmission on the network
n. In the following evaluation, M is set to 470Kbit, pn is
193×10-9 and 60×10-9 for the access and core networks,
respectively. These values are calculated from catalog data
for carrier-grade network equipment. The available bandwidth
Bn(t) is given in the simulation. In the above equation, Ds,n

pass

is the set of devices that session s has passed before reaching
node n. This means that a video frame processed by a device
will not consume network bandwidth after the device.

VI. OPTIMIZATION METHOD

Our proposed optimization method shown in Fig. 7 uses a
GA to dynamically search for genes as optimal solutions in
changing environments. To improve initial convergence and
reaction to large environmental change, BAM monitors the
environment and when it finds the current environment to be
close to one of the retained environments, the corresponding
retained genes are introduced into the population. In the
following, we will first explain the basic solution search using
GA, and then introduce external genes by BAM.

A. Dynamic solution search by GA

In the proposed method, the states of the entire system are
expressed as a gene in an individual. A population is a set
of individuals who have various genes. An individual that has
the highest fitness for the current environment, where the con-
straints of all sessions are met and the total power consumption

Fig. 7. System Model.

is minimum, is selected as the best individual, and the entire
system is controlled by its gene. The genes express the system
control parameters, portion of the processing, and selection of
the model at terminal, edge and cloud for all sessions; thus, it
is defined as a set of these values:

[W d
s (t) for ∀s ∈ S and ∀d ∈ Ds,

Md
s (t) for ∀s ∈ S and ∀d ∈ Ds].

Then, the fitness value F of an individual with such a gene is
obtained using equations (1)-(3) and their associated equations,
as follows:

F = −P +
∑
s∈S

min(Tmax
s − Ts, 0)α

f+∑
s∈S

min(As −Amin
s , 0)βf .

(10)

The lower the power consumption P , the higher the fitness
F , which takes negative values. If the processing time exceeds
its limits or the recognition accuracy is lower than its limits,
the fitness F is reduced accordingly. αf and βf are hyper-
parameters for constraints and were set to very large values
because we place more importance on the fulfillment of the
constraints than on power consumption. We also evaluate a
method without considering power consumption, which uses
the following equation as a fitness function.

F ′ =
∑
s∈S

min(Tmax
s − Ts, 0)α

f+∑
s∈S

min(As −Amin
s , 0)βf .

(10’)

In GA optimization, the entire system is dynamically opti-
mized by repeating steps (A1) through (A5) below, as shown
in Fig. 7.

(A1) Measure the state of the networks and devices, and give
this as the environmental condition.

(A2) Decode the genes of each individual and update its fitness
value under the environmental condition.

(A3) Select elite individuals with higher fitness values from
the population and form a new population consisting of
them and their offspring.

(A4) Produce offspring from elite individuals and mutate its
some genes.

(A5) Update the processing portion and CNN model selection
in the devices for each video session, based on the
information about the gene of the individual that has the
highest fitness value.

B. Introduction of external genes by BAM

We also propose the evolution of populations by introducing
various external genes to react to large environmental changes.

1) Environmental state inference: The proposed method
continuously monitors the current environment status, and
BAM takes a time series of noisy and high-dimensional input
data, Observation, and gradually updates its belief about which
retained set of status, Attractors, is most similar to the current
input data via Bayesian inference. The mechanism of BAM is
not described in this paper, but it is introduced in the literature
[9], and we will describe how it is applied to the optimization
problem.

In this paper, we assume that the distributed video analysis
application is assigned with dedicated terminals, edge servers
and cloud servers, and thus we assume that the number of de-
vices and its available capacity are unchanged. Instead, access
and backbone networks are shared with many other users, and
their wireless capacity fluctuates a lot. Therefore, we define
that the environmental state includes the available monitored
bandwidth Bn(t) of the network link n (0 ≤ n ≤ N) at time
t as follows:

Observation: [B0(t), B1(t), . . . , BN (t)].

Then we also set a number of attractors, which are one of the
past experienced environmental states, as follows.

Attractors: [A0
i , A

1
i , . . . , A

N
i], 1 ≤ i ≤ |A|,

where An
i is the i-th attractor and its dimension is N , which

is the number of monitored network links. |A| is the number
of attractors. In our system, inference is made in the following
steps, which is also shown in Fig. 7:

(B1) Observe the available network bandwidth as system status
(B2) Input the observation into BAM and let it change its

decision state to determine attractor(s)
If multiple attractors are found to be similar to the current
status, then all of them are sent to the next steps with its
strength of belief.

2) Introduction of genes via two-point crossover: In this
paper, we assume that pairs of an attractor and a gene are given
in advance. The attractor corresponds to the past experiences
of the environment, and the gene is the one of an individual
that has the highest fitness in that environment. We call the
set of pairs a gene pool. When the BAM identifies that the
current status is similar, not exactly the same, to the past status,
its associated gene is introduced to the current population
as follows. If multiple attractors are selected, the genes of
these attractors are randomly introduced into the population
in proportion to the strength of their beliefs.

(B3) Take the gene(s) associated with the selected attractor(s)
from the gene pool.

(B4) The gene is introduced into the offspring of an individual.
However, in fact, the gene is the best from past experience

and not necessarily the best from the current situation, and
thus an individual with the gene may be weeded out very soon,
or the population with the gene may experience catastrophic
collapse. Therefore, we propose to gradually introduce the
gene via two-point crossover, that is, two random points are
chosen on the individual gene strings, and the genes are
exchanged at these points. This means that system control
parameters are not changed entirely, but part of it, i.e., several
sessions, is randomly chosen and replaced, and then the gene
is tested if it works well or not.

VII. OPTIMIZATION RESULTS

Some performance evaluation results are shown in this sec-
tion based on computer simulations with the actual component
modeling results described in the previous sections.

A. Evaluation settings

The proposed method is evaluated with the system model
shown in Fig. 2. The parameters used in the simulation
experiments are shown in TABLE IV. The latency require-
ment, accuracy requirement, access network bandwidth, and
backbone network bandwidth are randomly chosen from the
range shown in the table. Network topology, i.e., connections
between terminal and edge servers, and connections between
edge servers and cloud servers, is chosen at random. Device
allocation, i.e., devices used by a video session, is also
randomly chosen.

TABLE IV
SIMULATION PARAMETERS

Number of video sessions 20
Video bitrate 14.1 Mbps
Video frame per second 30 FPS
Latency requirement 50 msec – 200 msec
Accuracy requirement mAP 0.2 - 0.7
CNN models Yolo-tiny / Yolo / Yolo-spp
Number of terminals 10 (IA1)
Number of edge servers 4 (IA2 or IA3)
Number of cloud servers 2 (IA2 or IA3)
Access network bandwidth 10 Mbps – 50 Mbps
Access network propagation delay 10 msec
Backbone network bandwidth 10 Mbps – 500 Mbps
Backbone network propagation delay 10 msec
Population size 500
Mutation rate 0.2
Attractors for external genes 5 / 10 / 20

B. Simple Genetic Algorithm (Simple GA)

First, we evaluate the traditional simple GA algorithm as a
baseline. In Fig. 8, the traces of the fitness value of the best
individual in a population are shown. Multiple plots are shown
for different simulation runs with exactly the same settings.
As shown in this figure, we found that the evolution has two

modes; first the fitness value is quickly improved and reaches
some initial convergence point, then the fitness value improves
slowly and occasionally. We also found that, although the
fitness values are very similar in the different runs, their
control parameters, or gene, can be quite different. This means
that there are many local optimum solutions that have almost
the same goodness in the solution space. Therefore, the local
optimum can be found easily, and it takes time to jump to
other better local optimums to approach the global optimum.

Fig. 8. Fitness of 5 runs with the same configuration (Simple GA).

In Fig. 9, the total power consumption of the system, the
latency violation ratio, and the accuracy violation ratio of a run
are plotted as an example. We can confirm the characteristic
behavior of the proposed optimization algorithm. In the first
phase, two violation ratios decrease first, since the violation
has a much higher penalty than a higher power consumption
from an application point of view, as shown in Eq. (10). In this
phase, power consumption increases and decreases randomly
because the optimization algorithm focuses on solving the
violations. In the second phase, around the 9,000th generation,
both constraints of all sessions have been met, and then the
power consumption starts to continuously decrease. This is an
intended algorithm behavior, but we confirm that the Simple
GA algorithm takes time for initial convergence.

Fig. 9. Total power consumption and violations (Simple GA).

C. GA with BAM

We compared the algorithm with and without external gene
injection using BAM. In Fig. 10, the fitness averaged over 5
runs with the same configuration is plotted for Simple GA
and GA with BAM having 5, 10, and 20 attractors. The result
of GA is the same as in Fig. 8, and 5 runs in that figure
are averaged to one in this figure; thus we confirm again that
Simple GA takes time for initial convergence.

In the cases of GA with BAM, the attractors and their
associated gene were generated in advance in randomly gen-
erated 5, 10, and 20 environments. The result shows that
although the current environment is not exactly the same as
the retained environment, the algorithm can quickly find better
solutions using the fraction of retained genes. As the number
of attractors increases, the algorithm finds better solutions. We
also found that no matter how long the population evolves,
these small differences do not dissolve. This would mean
that there are still many local optimums close to the global
optimum and that it is very difficult to reach the final global
optimum no matter how close the algorithm approaches it.

D. Behavior in dynamic environment

In Fig. 11, Simple GA and GA with BAM are compared
in a dynamic environment, where network bandwidths are
randomly changed within the range shown in Table IV every
10,000 generations. We confirm that Simple GA takes time
for initial convergence, but, as it experiences environment
change many times, convergence after the change is improved.
However, it is still stuck in a local optimum that is no better
than GA with BAM. GA with BAM has good convergence
and always finds better solutions than Simple GA, but in this
case, it is sometimes stuck with a lower fitness value.

Lastly, we investigate the total power consumption of the
system, which is composed of network nodes and processing
devices. In Fig. 12, we tested Simple GA and GA with BAM,
however, Eq. 10’ was applied to Simple GA to investigate the
ability to save power. We also compared the algorithm in both
static environment, where no network bandwidth changes are
applied, and dynamic environment, where network bandwidths
are randomly changed at every 10,000 generations. Without
considering the power consumption in Simple GA, the total
power consumption in a static and dynamic environment
does not have much difference, which is 3182W and 3223W,
respectively. On the other hand, with the consideration of
power consumption by GA with BAM, the total power con-
sumption in the static environment can be reduced to 2643W,
while it increases to 2750W in the dynamic environment. To
compare these algorithms, GA with BAM can reduce power
consumption by approximately 20% and 17%, respectively, in
a static and dynamic environment, compared to Simple GA.

VIII. CONCLUSION

In this paper, we proposed a model to cooperatively op-
timize the entire system by distributing the video analysis
processing using CNN (Yolo-v3) in each frame and optimizing

Fig. 10. Fitness on average of 5 runs

Fig. 11. Fitness of dynamic environment in average of 5 runs

Fig. 12. Total power consumption of both static/dynamic environment on
average of 5 runs

the parameters of each CNN at the same time. We then pro-
posed optimization algorithms based on GA and BAM models
to find the optimal solution that minimizes the power con-
sumption of the entire system while simultaneously satisfying
the latency and recognition accuracy requirements of various
video sessions. Finally, simulation evaluations were conducted
based on models measured on actual equipment, showing the
effectiveness of the proposed method, especially its ability to
adaptively derive the optimal solution under changing envi-
ronmental conditions. In the future, we plan to further extend
the proposed method to model higher-dimensional system
conditions, such as the response to environmental changes
other than network fluctuations.

ACKNOWLEDGMENT

This work was supported by MIC under a grant entitled
“R&D of ICT Priority Technology (JPMI00316)”.

REFERENCES

[1] A. S. Andrae, “Prediction studies of electricity use of global computing
in 2030,” International Journal of Science and Engineering Investiga-
tions, vol. 8, no. 86, pp. 27–33, 2019.

[2] R. Li et al., “Towards a new internet for the year 2030 and beyond,”
in Proc. 3rd Annu. ITU IMT-2020/5G Workshop Demo Day, 2018, pp.
1–21.

[3] A. S. Andrae and T. Edler, “On global electricity usage of communica-
tion technology: trends to 2030,” Challenges, vol. 6, no. 1, pp. 117–157,
2015.

[4] K. Rao, G. Coviello, W.-P. Hsiung, and S. Chakradhar, “Eco: Edge-cloud
optimization of 5g applications,” in 2021 IEEE/ACM 21st International
Symposium on Cluster, Cloud and Internet Computing (CCGrid). IEEE,
2021, pp. 649–659.

[5] B. Jennings and R. Stadler, “Resource management in clouds: Survey
and research challenges,” Journal of Network and Systems Management,
vol. 23, no. 3, pp. 567–619, 2015.

[6] M. Asim, Y. Wang, K. Wang, and P.-Q. Huang, “A review on com-
putational intelligence techniques in cloud and edge computing,” IEEE
Transactions on Emerging Topics in Computational Intelligence, vol. 4,
no. 6, pp. 742–763, 2020.

[7] Y. Chen, Y. Sun, C. Wang, and T. Taleb, “Dynamic task allocation and
service migration in edge-cloud iot system based on deep reinforcement
learning,” IEEE Internet of Things Journal, 2022.

[8] J. H. Holland, “Genetic algorithms,” Scientific american, vol. 267, no. 1,
pp. 66–73, 1992.

[9] S. Bitzer, J. Bruineberg, and S. J. Kiebel, “A bayesian attractor model
for perceptual decision making,” PLoS computational biology, vol. 11,
no. 8, p. e1004442, 2015.

[10] R. Mehta and R. Shore, “Deepsplit: Dynamic splitting of collabora-
tive edge-cloud convolutional neural networks,” in 2020 International
Conference on COMmunication Systems and NETworkS (COMSNETS),
2020, pp. 720–725.

[11] M. Shen, K. Xu, K. Yang, and H.-H. Chen, “Towards efficient virtual
network embedding across multiple network domains,” in 2014 IEEE
22nd International Symposium of Quality of Service (IWQoS). IEEE,
2014, pp. 61–70.

[12] F. Wei, G. Feng, Y. Sun, Y. Wang, and Y.-C. Liang, “Dynamic network
slice reconfiguration by exploiting deep reinforcement learning,” in ICC
2020-2020 IEEE International Conference on Communications (ICC).
IEEE, 2020, pp. 1–6.

[13] H. Chergui and C. Verikoukis, “Opex-limited 5g ran slicing: an over-
dataset constrained deep learning approach,” in ICC 2020-2020 IEEE
International Conference on Communications (ICC). IEEE, 2020, pp.
1–6.

[14] I. Pathak and D. P. Vidyarthi, “A model for virtual network embed-
ding across multiple infrastructure providers using genetic algorithm,”
Science China Information Sciences, vol. 60, no. 4, pp. 1–12, 2017.

[15] G. Zhao, S. Qin, G. Feng, and Y. Sun, “Network slice selection
in softwarization-based mobile networks,” Transactions on Emerging
Telecommunications Technologies, vol. 31, no. 1, p. e3617, 2020.

[16] J. Lehman and K. O. Stanley, “Evolving a diversity of virtual creatures
through novelty search and local competition,” in Proceedings of the
13th annual conference on Genetic and evolutionary computation, 2011,
pp. 211–218.

[17] J.-B. Mouret and J. Clune, “Illuminating search spaces by mapping
elites,” arXiv preprint arXiv:1504.04909, 2015.

[18] “Alexeyab/darknet: Yolov4 / scaled-yolov4 / yolo - neural networks
for object detection,” https://github.com/AlexeyAB/darknet, accessed:
January 19, 2023.

[19] “Przeglad muzyczny 2011- by raz pewien pan,”
https://www.youtube.com/watch?v=AJbQP-rIwCY, accessed: January
19, 2023.

[20] “Youtube-bb dataset — google research,”
https://research.google.com/youtube-bb/download.html, accessed:
January 19, 2023.

