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Expand IoT to Digital-Twin Q
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- Digital-Twin as real-time and high-precision representation of

the entire space

« EXxplosive Evolution of Telecommunications with Digital-Twin
— Organisms acquired eyes during the Cambrian explosion
— ICT systems acquire “eyes” towards Beyond 5G/6G era
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Source: https://jpn.nec.com/nsp/5g/beyond5g/index



Digital-Twin (of our understanding) L
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« Fusing real and virtual world to provide new value propositions
to our society
— Digitalize the entire real-world in real-time, and reproduce them as a virtual world

— Creating new services (such as future prediction and human-robot coexistence) by
utilizing 4-dimensional (space + time) data structure in the digital-twin
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Beyond 5G vision towards Digital-Twin
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“Safety, security and peace of mind” would be a key driving

force

Beyond 5G White Paper
~Message to the 2030s~

version 1.5

September 30, 2022

Beyond 5G Promotion Consortium
White Paper Subcommittee
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Beyond 5G Promotion Consortium
Beyond 5G White Paper
https://b5g.jp/en/output.html
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“Deterministic” Digital-Twin Q
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Constructing very precise copy of real-world to be safe and
secure, with Beyond 5G and advance Al

« Robust ?

— Uncertainty in network reliability and service quality
— Uncertainty in recognition and control of real-world

« Eco-friendly?
— Huge traffic amount: very high-definition sensing data
— Huge computation: very accurate recognition



“Probabilistic” Digital-Twin £
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- A digital twin that:
— probabilistically infers real-world from uncertain observations,
— non-deterministically predicts the future,
— and navigate human, actuate robots, control things, flexibly

Real-world will tolerate sudden events and physical uncertainties by
decision making based on ”probabilistic information assuming error”

Recognition with W
probability distribution [+

- 7 T4 B

} g T . o 3T

.‘:'! 45 3 - i ) =
g - -

=5 4

Localization with
probability distribution

Any status with
probability distribution

i F—- 1 |

Deterministic representation Probabilistic representation



Technologies for Digital-Twin
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Digital-Twin of human, robots, cars, cities, and things in
physical space used for robots/humans

Spatio-temporal state modeling with
probability distribution/confidence

Distributed AI/ML
processing

Beyond 5G network —=

Multi-sensor / multi-
modal recognition




(1) Multimodal recognition (1/2) Q
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« Probabilistic recognition of various objects in physical space from
noisy and unstable monitoring

« Mathematical model of the brain's stochastic perceptual function

Spatio=temporal state modeling

Cognitive decision making using graphical models
(most plausible interpretation of the entire real world)

Multimodal integration using Bayesian Causal Inference

< Graphical model (MRF) .~ (BCI = Causal inference by perceptual integration processing
in the brain)

s D

s o _f_ = ~ Unimodal object recognition using Bayesian Attractor
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1 1 g S— (BAM = cognitive models of the human brain to identify
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(1) Multimodal recognition (2/2) Q
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« Multimodal complementation combines missing inputs to
generate plausible cognitive decision making

Mean accuracy
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(2) Spatio-temporal state modeling (1/3) ¢
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Application to the prediction of obstacles

OPEN 2021

Objective: I Sensor
« To predict the existence of moving obstacles

in each area for the control of moving robots

-
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E Robots
Controlled area

Assumption: Controller
« Observation
— Multiple sensors such as camera, LiDAR etc..
« Obstacles
— Obstacles may move (e.g., human, other robots etc..)

Approach:
« Construct spatio-temporal model of the area based of CRF
« Update the model based on the observations.



(3) Spatio-temporal state modeling (2/3) Q
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« Application to the prediction of obstacles |
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(2) Spatio-temporal state modeling (3/3) Q
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Example of the results of the prediction

The area with obstacles can be predicted

based on the spatio-temporal CRF. y
Actual Obstacles

Prediction .
(3 seconds before the target)

Prediction .'

(5 seconds before the target)



(3) Radio communication map (1/2) Q
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« Practical use of higher frequency radio in mobile environment

« Controlling system and antennas using “Radio communication map”
— Map mesh > Wavelength; deterministic representation would be hard
— Probabilistic representation of signal strength/throughput/delay map

: Signal strength Terminal
Proactive Throughput locations Network/antenna
Delay @
control A control

Probabilistic inference' ‘ Update / control

Digital- : :
Twins Radio map




(3) Radio communication map (2/2) ?

« Coordination of Digital-Twins of radio map and physical space
= Maps them into common spatial axes

« Coordinated control of radio and robot
— Robots take a path of good radio, and move cautiously otherwise
— Network controls antenna beam targeting moving robots

Joint Network/antenna “ Robot control/
control control human navigation

Probabilistic inferencef ‘ Update / control

Digital- : : :




(4) Distributed AI processing (1/4)
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Reduce power consumption of the entire system is required for
digital twin construction
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« Optimization of distributed processing is necessary to perform video
analysis with the required recognition accuracy and delay time.

7

<

Video analysis at cloud
« Video data is collected from

cameras to the cloud

« Consuming large amounts of

network bandwidth
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Video analysis at edge

Reduces network bandwidth
through local processing
Limited computing resources

~

4

16



(4) Distributed AI processing (2/4)

System model
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Minimize power

L

consumption: sum of terminal/edge/cloud/wireless NW/backbone NW power consumption

P = £ (ap)PoWp + DPy (1 — Wp) + £ (ag)PeWg + DP (1 — Wp — W) + £ (ac)Pe(1 = Wp — W)
E2E latency constraint: sum of analysis time at terminal/edge/cloud and transfer time at wireless NW/backbone NW
_ fnwmp (aD)

(ag)
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Image recognition accuracy constraints: weighted sum of recognition accuracy at terminal/edge/cloud

e Request A= fgelap)Wp + ff(ag)ag + fEC(ac)(1 = Wp — W) < Apin
Video analysis -
- Minimum accuracy requirement Mathematlcal mOdeI
- Maximum latency requirement .
N M y requirement
( System control f/_, v ‘j
CNN model CNN model CNN model Optl m |Zer
L portion '°°rlt'°” porton 1 contr model
( Ta rget system @ {} b ) status
Video frames are sliced and distributed for processing
Edge server
Cloud server
Edge server Backbone network
Terminal
Access network
\_ (5G, WiFi, fixed, etc.) )




(4) Distributed AI processing (3/4) Q
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« Experiment to get machine modeling for YoLo-v3

« Estimate GPU load, processing delay, and power consumption based
on machine spec, CNN model, and video frame rate.

Cloud servers

Edge servers

Machine spec.

| [Terminal | Edge/cloud server
PU Core i7-8700T Core i9-10940X Xeon GLOD

6226R x2

35W 165W 205W x3
“ Nvidia GeForce  Nvidia RTX Nvidia Tesla T4

GTX1070 A5000 X2

6.463Tflops 27.77Tflops 8.141Tflops x2
150W 230W 70W x2

CNN models

| _Model |  mAP | Floating operations
33.1% 5.6B / frame
55.3% 65.9B / frame
60.6% 141.5B / frame




(4) Distributed AI processing (4/4)

« System optimization with Genetic Algorithm solver

Constraints violation

Power saving
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Possible discussions: ¢
Probabilistic data structure and API i
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« Probabilistic internal data structure that allow for any parallel
understanding of real world

« APIs that provide probabilistic information of maximum likelihood
understanding of the moment
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Possible discussions:

Digital-twin computing platform

ORAA LMETRETY OPEN 2021

« Hierarchical edge-cloud data structure meeting space and time resolution

requirements

« Integrated optimization of network and computing resources

Let us build campus-wide testbed

as easy as possible. ; ﬂ

Digital-twin (cloud)
Global and long-term data

Digital-twin (local)

Resources
(jointly optimized)

Cloud servers

— QOptical/ radio

Edge servers

Local data / real time control M
+ T Local/private 5G
U U

L‘ Terminal devices



Possible discussions: Q
Digital-twin computing framework s

« Real time data exchange for Cyber Physical Systems (10-200msec)
« Flexible data exchange with internal/external systems

Let our students write those experimental /PoC
applications as easy as possible,

Digital-twin applications

External

systems Physical space Network/antenna Robot contro
recognition control human navigation

BIM/CAD

oad map
r Digital-twin data structure




Campus Living-Lab vision L
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campus

Osaka University
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Proof-of-Concepts for
solving social problems




Summary

Let us digitize probabilistically
— Physical space; robots and humans
— Network and radio, and others

(1) Multimodal recognition

(2) Spatio-temporal state modeling
(3) Radio communication map

(4) Distributed AI processing



