IOWN Global Forum Member Meeting

Proposal of Probabilistic Digital-Twin

24th Oct. 2022 HIDEyuki Shimonishi, Osaka University Masayuki Murata, Osaka University

https://www.nobelprize.org/uploads/2022/10/press-physics2022-figure1.pdf

Expand IoT to Digital-Twin

- Digital-Twin as real-time and high-precision representation of the entire space
- Explosive Evolution of Telecommunications with Digital-Twin
 - Organisms acquired eyes during the Cambrian explosion
 - ICT systems acquire "eyes" towards Beyond 5G/6G era

Source: https://jpn.nec.com/nsp/5g/beyond5g/index.html

Digital-Twin (of our understanding)

- Fusing real and virtual world to provide new value propositions to our society
 - Digitalize the entire real-world in real-time, and reproduce them as a virtual world
 - Creating new services (such as future prediction and human-robot coexistence) by utilizing 4-dimensional (space + time) data structure in the digital-twin

Beyond 5G vision towards Digital-Twin

"Safety, security and peace of mind" would be a key driving force

Beyond 5G Promotion Consortium Beyond 5G White Paper https://b5g.jp/en/output.html

"Deterministic" Digital-Twin

Constructing very precise copy of real-world to be safe and secure, with Beyond 5G and advance AI

- Robust ?
 - Uncertainty in network reliability and service quality
 - Uncertainty in recognition and control of real-world
- Eco-friendly?
 - Huge traffic amount: very high-definition sensing data
 - Huge computation: very accurate recognition

"Probabilistic" Digital-Twin (1/2)

- A digital twin that:
 - probabilistically infers real-world from uncertain observations,
 - non-deterministically predicts the future,
 - navigate human, actuate robots, and control things flexibly

Real-world will tolerate sudden events and physical uncertainties by decision making based on "probabilistic information assuming error"

(1) Digital-Twin with Beyond 5G

Digital-Twin of human, robots, cars, cities, and things in physical space

(1) Digital-Twin with Beyond 5G -Multimodal recognition (1/2)

- Probabilistic recognition of various objects in physical space from noisy and unstable monitoring
- Mathematical model of the brain's stochastic perceptual function

(1) Digital-Twin with Beyond 5G -Multimodal recognition (2/2)

 Multimodal complementation combines missing inputs to generate plausible cognitive decision making

(1) Digital-Twin with Beyond 5G -Risk sensitive robot control (collaboration with NEC)

(2) Digital-Twin for Beyond 5G

Robust network management for safety/security and efficiency
Joint control of infrastructure and applications(robots/cars)

(2) Digital-Twin for Beyond 5G -Radio communication map

- Practical use of higher frequency radio in mobile environment
- Controlling system and antennas using "Radio communication map"
 - Map mesh > Wavelength; deterministic representation would be hard
 - Probabilistic representation of signal strength/throughput/delay map

(2) Digital-Twin for Beyond 5G -Radio and Robot Coordinated Control

- Coordination of Digital-Twins of radio map and physical space
 Maps them into common spatial axes
- Coordinated control of radio and robot
 - Robots take a path of good radio, and move cautiously otherwise
 - Network controls antenna beam targeting moving robots

Possible discussions: (Probabilistic) data structure and API

- Probabilistic internal data structure that allow for <u>any parallel</u> <u>understanding of real world</u>
- APIs that provide probabilistic information of <u>maximum likelihood</u> <u>understanding of the moment</u>

Possible discussions: Digital-twin computing platform

- Hierarchical edge-cloud data structure meeting space and time resolution requirements
- Integrated optimization of network and computing resources

Possible discussions: Digital-twin computing framework

• Flexible data exchange with internal/external systems in real-time for Cyber Physical Systems (10-200msec)

Let our students write those experimental/PoC applications as easy as possible.

Industry-Academia Cocreation

- Osaka University, NEC Beyond 5G Research Alliance Laboratories
 - Beyond 5G/Digital Twin to expand human capabilities and realize a society where robots coexist with and accompany people

大阪大学 OPEN 2021

Summary

- Let us digitize probabilistically
 - Physical space
 - Network and radio
 - Joint optimization / navigation
 - Network and radio
 - Human and things
- Possible discussions
 - Digital-Twin computing framework and platform
 - (Probabilistic) data structure and API

Acknowledgements

• This work was partially supported by Grant No.00701 from National Institute of Information and Communications Technology (NICT) in Japan.

