複眼センサシステムのための
モンテカルロ法に基づく歩行者数推定手法

研究背景

歩行者計数
- 商業施設やイベント会場における来客数調査、工事現場での安全管理などに利用
- 手動による計数はコストが高く、混雑状況では計数が困難
 自動化する技術が注目されている

バイナリセンサ（例：赤外線センサ）
- センサのセンシング領域内の人の有無のみを検出可能
- 価格、構造が単純、消費電力が少ない
- 積算値絡み合わせて複眼センサを構成する事で、歩行者の移動方向などの移動特性を検出可能

既存研究 [25]
- 複眼センサの歩行者検出のタイミングの差から移動方向別の歩行者数を推定する手法を提案
- 多くの人が行き交う混雑状況の下では歩行者数の推定精度が低下する問題が生じる

複眼センサ

天井に2つのバイナリセンサをセンサ間距離dだけ離して設置することで構成される

出力を(b₁, b₂)と表記するとセンシング領域内の歩行者数は以下のように表せる
- [0,0]の場合、0人（観測不可能状態）
- [1,0]の場合、左のセンサ内に1人以上
- [0,1]の場合、右のセンサ内に1人以上
- [1,1]の場合、左右のセンサ内に1人以上

性能評価結果

到着率が0.5の場合、比較手法では相対誤差が約0.9, 提案手法では相対誤差が約0.4となっており、推定精度が大きく改善されている

目的

- 多くの人が行き交う混雑状況の下でも歩行者数の推定ができる手法の考案

手段

- 複眼センサシステムを用い
- システムで使用するモンテカルロ法に基づく歩行者数推定手法の考案

複眼センサシステム

2つのバイナリセンサのセンシング領域を部分的に重ねた複眼センサを歩行者数の推定を行い図に示す箇所に設置する

複眼センサから得られた情報はサーバに収集され、その情報をもとにランダムなシミュレーションを行い歩行者数の推定を行う

歩行者数推定手法

観測可能な状態[0,0]から複眼センサのセンシング領域へ歩行者が進入し、再び観測可能な状態[0,0]に戻るまでの状態遷移をN回のモンテカルロシミュレーションを行い、その中から実際の複眼センサの出力履歴最も近い出力履歴を行ったシミュレーションでの歩行者数を推定歩行者数とする

今後の課題

- 歩行者の大きさを考慮した場合の性能評価と推定性能の改善
- 赤外線センサを用いた実機実験での提案手法の性能評価
- N眼センサへの拡張（N ≥ 2）