An Inter-domain Overlay Network Based on ISP Alliance

Background and objective

- Tiered Internet structure
 - Tier 1: Backbone ISPs
 - Tier 2: Regional ISPs
 - Tier 3: Access ISPs

- Sub-optimality of current inter-domain routing protocol -- BGP
 - Technical: Path of the least hop count is not equal to path with best performance
 - Economic: Route choice space is limited by BGP policies, e.g. path with valley is not allowed

- Our work
 - An inter-domain overlay network based on ISP alliance
 - More efficient routing and economic structure within the overlay network
 - A simple algorithm for ISPs to search the optimal transit prices

Inter-domain overlay network

- Overlay network based on ISP alliance
 - ISP alliance: comprised of adjacent ISPs
 - Inter-domain overlay network: constructed by overlay nodes operated by ISPs within the ISP alliance

- Basic routing and economic structure within ISP alliance

<table>
<thead>
<tr>
<th>ISP alliance</th>
<th>Internet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routing structure</td>
<td>Source routing Multi-path routing</td>
</tr>
<tr>
<td>Business relations</td>
<td>Every ISP in the alliance provides transit service</td>
</tr>
<tr>
<td>Charging</td>
<td>Traffic users pay every ISP along the routes that their traffic traverse.</td>
</tr>
</tbody>
</table>

Interaction of traffic user ISPs and transit ISPs

- ISPs dual roles
 - Traffic user
 - Transit provider
- Interaction of the two roles
 1. Transit ISPs decide prices
 2. Traffic user ISPs make routing decision
 3. Transit ISPs obtain revenue

Pricing scheme

- Non-cooperative pricing game: Each ISP decides price for each route individually
 - Inefficient in traffic routing
 - Unfair for ISPs’ revenue sharing
- A small-scaled cooperative game based on route bundle
 - Route bundle: a bundle of routes with the same source, destination and entrance ISP
 - Price is decided for route bundle rather than route
 - Price can be decided by entrance ISP simply
- A simple pricing algorithm to search the optimal prices
 1. Initialize price p as p_0
 2. Loop step 3 ~ step 5 until optimal price being found
 3. Increase p_i as one unit. If revenue increases, go to 4, else go to 5
 4. Keep increasing p, until revenue decreases
 5. Keep decreasing p, until revenue decreases

ISP’s routing decision and optimal transit price

- ISP’s routing decision with single path
 - $d_i(p_i)$ is ISP’s traffic demand on path i, given the route price p_i
 - $d_i(p_i)$ is decreasing and differentiable
 - $g_i'(p_i) = -d_i'(p_i)/d_i'(p_i)$ is decreasing

- ISP’s routing decision with multiple paths $<R_1, ..., R_n>$ in ascending order with performance as well as price
 - Traffic demand through R_i: $d_i(p_i) - d_{i+1}(p_i)$
 - Revenue obtained from R_i: $p_i(d_i(p_i) - d_{i+1}(p_i))$
 - Optimal transit price $p_i = \arg\max p_i(d_i(p_i) - d_{i+1}(p_i))$ has a unique solution

Experiment for verifying the pricing algorithm

- The theoretical optimal price p^*:
 - $p^{*1-3-6} = 7.00$
 - $p^{*1-2-6} = 4.00$
 - $p^{*1-5-6} = 2.00$

The prices of route bundles can converge into optimal values with which the revenues obtained from those route bundles can reach the theoretical maximum